m估计诱导模糊聚类算法

R. Winkler, F. Klawonn, R. Kruse
{"title":"m估计诱导模糊聚类算法","authors":"R. Winkler, F. Klawonn, R. Kruse","doi":"10.2991/eusflat.2011.132","DOIUrl":null,"url":null,"abstract":"M-estimators can be seen as a special case of robust clustering algorithms. In this paper, we present the reversed direction and show that clustering algorithms can be constructed by using M-estimators. A clever normalization is used to link the values of several M-estimator prototypes together in one clustering algorithm. A variety of M-estimators and several normalization strategies are used in 4 data sets to present their dierences and properties. The results are evaluated using 5 dierent clustering validation indices.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"M-Estimator induced Fuzzy Clustering Algorithms\",\"authors\":\"R. Winkler, F. Klawonn, R. Kruse\",\"doi\":\"10.2991/eusflat.2011.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"M-estimators can be seen as a special case of robust clustering algorithms. In this paper, we present the reversed direction and show that clustering algorithms can be constructed by using M-estimators. A clever normalization is used to link the values of several M-estimator prototypes together in one clustering algorithm. A variety of M-estimators and several normalization strategies are used in 4 data sets to present their dierences and properties. The results are evaluated using 5 dierent clustering validation indices.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

m估计器可以看作是鲁棒聚类算法的一个特例。在本文中,我们提出了相反的方向,并证明了聚类算法可以用m估计量构造。在一个聚类算法中,使用一种巧妙的归一化方法将多个m估计量原型的值连接在一起。在4个数据集中使用了各种m估计量和几种归一化策略来展示它们的区别和性质。使用5种不同的聚类验证指标对结果进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M-Estimator induced Fuzzy Clustering Algorithms
M-estimators can be seen as a special case of robust clustering algorithms. In this paper, we present the reversed direction and show that clustering algorithms can be constructed by using M-estimators. A clever normalization is used to link the values of several M-estimator prototypes together in one clustering algorithm. A variety of M-estimators and several normalization strategies are used in 4 data sets to present their dierences and properties. The results are evaluated using 5 dierent clustering validation indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信