基因组数据预测的深度学习方法:综述

Yusuf Aleshinloye Abass, Steve A. Adeshina
{"title":"基因组数据预测的深度学习方法:综述","authors":"Yusuf Aleshinloye Abass, Steve A. Adeshina","doi":"10.2991/JAIMS.D.210512.001","DOIUrl":null,"url":null,"abstract":"The last few years have seen an advancement in genomic research in bioinformatics. With the introduction of high-throughput sequencing techniques, researchers now can analyze and produce a large amount of genomic datasets and this has aided the classification of genomic studies as a “big data” discipline. There is a need to develop a robust and powerful algorithm and deep learning methodologies can provide better performance accuracy than other computational methodologies. In this review, we captured the most frequently used deep learning architectures for the genomic domain. We outline the limitations of deep learning methodologies when dealing with genomic data and we conclude that advancement in deep learning methodologies will help rejuvenate genomic research and build a better architecture that will promote a genomic task.","PeriodicalId":196434,"journal":{"name":"Journal of Artificial Intelligence for Medical Sciences","volume":"280 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Learning Methodologies for Genomic Data Prediction: Review\",\"authors\":\"Yusuf Aleshinloye Abass, Steve A. Adeshina\",\"doi\":\"10.2991/JAIMS.D.210512.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last few years have seen an advancement in genomic research in bioinformatics. With the introduction of high-throughput sequencing techniques, researchers now can analyze and produce a large amount of genomic datasets and this has aided the classification of genomic studies as a “big data” discipline. There is a need to develop a robust and powerful algorithm and deep learning methodologies can provide better performance accuracy than other computational methodologies. In this review, we captured the most frequently used deep learning architectures for the genomic domain. We outline the limitations of deep learning methodologies when dealing with genomic data and we conclude that advancement in deep learning methodologies will help rejuvenate genomic research and build a better architecture that will promote a genomic task.\",\"PeriodicalId\":196434,\"journal\":{\"name\":\"Journal of Artificial Intelligence for Medical Sciences\",\"volume\":\"280 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence for Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/JAIMS.D.210512.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence for Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/JAIMS.D.210512.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的几年里,生物信息学的基因组研究取得了进展。随着高通量测序技术的引入,研究人员现在可以分析和产生大量的基因组数据集,这有助于将基因组研究分类为“大数据”学科。有必要开发一种鲁棒而强大的算法,深度学习方法可以提供比其他计算方法更好的性能准确性。在这篇综述中,我们捕获了基因组领域最常用的深度学习架构。我们概述了深度学习方法在处理基因组数据时的局限性,并得出结论,深度学习方法的进步将有助于振兴基因组研究,并建立一个更好的架构,以促进基因组任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Methodologies for Genomic Data Prediction: Review
The last few years have seen an advancement in genomic research in bioinformatics. With the introduction of high-throughput sequencing techniques, researchers now can analyze and produce a large amount of genomic datasets and this has aided the classification of genomic studies as a “big data” discipline. There is a need to develop a robust and powerful algorithm and deep learning methodologies can provide better performance accuracy than other computational methodologies. In this review, we captured the most frequently used deep learning architectures for the genomic domain. We outline the limitations of deep learning methodologies when dealing with genomic data and we conclude that advancement in deep learning methodologies will help rejuvenate genomic research and build a better architecture that will promote a genomic task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信