基于视觉物体识别和触觉感知的自主抓取控制系统

Jing An, Tong Li, Gang Chen, Q. Jia, Junpei Yu
{"title":"基于视觉物体识别和触觉感知的自主抓取控制系统","authors":"Jing An, Tong Li, Gang Chen, Q. Jia, Junpei Yu","doi":"10.1109/ICoSR57188.2022.00023","DOIUrl":null,"url":null,"abstract":"Despite the impressive progress of vision guidance in robot grasping, robots are not proficient in fine manipulation tasks, especially applying algorithms to real robot grasping systems where a single vision data does not solve the problem of contact perception of the target surface in fine grasping. So we propose a real-time robot grasping method based on position and contact force control, where vision is used for identify and locate the grasping target, and haptics is used to perform stable grasping. Using ZED camera and robotiq three-finger hand claw equipped with uskin haptic sensor, we trained the grasping targets with cylindrical or spherical shapes such as oranges and water bottles in CoCo dataset, and the results show that the grasping position error of the robot grasping system does not exceed 0.04m, the relative error not more than 6%, and the PID-based force control makes the grasping more stable, which proves the effectiveness of the grasping control method with visual-touch information integration.","PeriodicalId":234590,"journal":{"name":"2022 International Conference on Service Robotics (ICoSR)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Autonomous Grasping Control System Based on Visual Object Recognition and Tactile Perception\",\"authors\":\"Jing An, Tong Li, Gang Chen, Q. Jia, Junpei Yu\",\"doi\":\"10.1109/ICoSR57188.2022.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the impressive progress of vision guidance in robot grasping, robots are not proficient in fine manipulation tasks, especially applying algorithms to real robot grasping systems where a single vision data does not solve the problem of contact perception of the target surface in fine grasping. So we propose a real-time robot grasping method based on position and contact force control, where vision is used for identify and locate the grasping target, and haptics is used to perform stable grasping. Using ZED camera and robotiq three-finger hand claw equipped with uskin haptic sensor, we trained the grasping targets with cylindrical or spherical shapes such as oranges and water bottles in CoCo dataset, and the results show that the grasping position error of the robot grasping system does not exceed 0.04m, the relative error not more than 6%, and the PID-based force control makes the grasping more stable, which proves the effectiveness of the grasping control method with visual-touch information integration.\",\"PeriodicalId\":234590,\"journal\":{\"name\":\"2022 International Conference on Service Robotics (ICoSR)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Service Robotics (ICoSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoSR57188.2022.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Service Robotics (ICoSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoSR57188.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管视觉引导在机器人抓取方面取得了令人瞩目的进展,但机器人在精细操作任务方面并不精通,特别是将算法应用到真实的机器人抓取系统中,单一的视觉数据并不能解决精细抓取中目标表面的接触感知问题。因此,我们提出了一种基于位置和接触力控制的机器人实时抓取方法,其中视觉用于识别和定位抓取目标,触觉用于稳定抓取。利用ZED相机和配备uskin触觉传感器的robotiq三指手爪,在CoCo数据集中训练了橙子、水瓶等圆柱形或球形的抓取目标,结果表明,机器人抓取系统的抓取位置误差不超过0.04m,相对误差不超过6%,基于pid的力控制使抓取更加稳定。验证了视触信息集成抓取控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autonomous Grasping Control System Based on Visual Object Recognition and Tactile Perception
Despite the impressive progress of vision guidance in robot grasping, robots are not proficient in fine manipulation tasks, especially applying algorithms to real robot grasping systems where a single vision data does not solve the problem of contact perception of the target surface in fine grasping. So we propose a real-time robot grasping method based on position and contact force control, where vision is used for identify and locate the grasping target, and haptics is used to perform stable grasping. Using ZED camera and robotiq three-finger hand claw equipped with uskin haptic sensor, we trained the grasping targets with cylindrical or spherical shapes such as oranges and water bottles in CoCo dataset, and the results show that the grasping position error of the robot grasping system does not exceed 0.04m, the relative error not more than 6%, and the PID-based force control makes the grasping more stable, which proves the effectiveness of the grasping control method with visual-touch information integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信