模糊决策树算法的一种新的划分准则

Chengming Qi
{"title":"模糊决策树算法的一种新的划分准则","authors":"Chengming Qi","doi":"10.1109/IITA.2007.55","DOIUrl":null,"url":null,"abstract":"Decision trees represent a simple and powerful method of induction from labeled instances. Fuzzy decision tree is the generalization of decision tree in fuzzy environment. The knowledge represented by fuzzy decision tree is more natural to the way of human thinking, but it's preprocess and tree-constructing are much costly. In this paper, we propose a modified fuzzy decision tree model (MFD). Entropy of multi-valued and continuous-valued attributes is both computed with fuzzy theory after fuzzification, while entropy of other attributes is dealt with General Shannon method. Experiment results suggest that the proposed model is more effective and efficient and can leads to comprehensible decision trees.","PeriodicalId":191218,"journal":{"name":"Workshop on Intelligent Information Technology Application (IITA 2007)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A New Partition Criterion for Fuzzy Decision Tree Algorithm\",\"authors\":\"Chengming Qi\",\"doi\":\"10.1109/IITA.2007.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision trees represent a simple and powerful method of induction from labeled instances. Fuzzy decision tree is the generalization of decision tree in fuzzy environment. The knowledge represented by fuzzy decision tree is more natural to the way of human thinking, but it's preprocess and tree-constructing are much costly. In this paper, we propose a modified fuzzy decision tree model (MFD). Entropy of multi-valued and continuous-valued attributes is both computed with fuzzy theory after fuzzification, while entropy of other attributes is dealt with General Shannon method. Experiment results suggest that the proposed model is more effective and efficient and can leads to comprehensible decision trees.\",\"PeriodicalId\":191218,\"journal\":{\"name\":\"Workshop on Intelligent Information Technology Application (IITA 2007)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Intelligent Information Technology Application (IITA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITA.2007.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Intelligent Information Technology Application (IITA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITA.2007.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

决策树代表了一种简单而强大的从标记实例进行归纳的方法。模糊决策树是模糊环境下决策树的推广。模糊决策树表示的知识更符合人类的思维方式,但其预处理和树的构造成本较高。本文提出了一种改进的模糊决策树模型(MFD)。多值和连续值属性的熵在模糊化后用模糊理论计算,其他属性的熵用一般香农方法处理。实验结果表明,该模型具有较高的效率和有效性,能够生成可理解的决策树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Partition Criterion for Fuzzy Decision Tree Algorithm
Decision trees represent a simple and powerful method of induction from labeled instances. Fuzzy decision tree is the generalization of decision tree in fuzzy environment. The knowledge represented by fuzzy decision tree is more natural to the way of human thinking, but it's preprocess and tree-constructing are much costly. In this paper, we propose a modified fuzzy decision tree model (MFD). Entropy of multi-valued and continuous-valued attributes is both computed with fuzzy theory after fuzzification, while entropy of other attributes is dealt with General Shannon method. Experiment results suggest that the proposed model is more effective and efficient and can leads to comprehensible decision trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信