混合数值方法预测LED光通量寿命

Kasemsak Kijkanjanapaiboon, Theodore Wagner Kretschmer, Liangbiao Chen, Xuejun Fan, Jiang Zhou
{"title":"混合数值方法预测LED光通量寿命","authors":"Kasemsak Kijkanjanapaiboon, Theodore Wagner Kretschmer, Liangbiao Chen, Xuejun Fan, Jiang Zhou","doi":"10.1109/EUROSIME.2015.7103112","DOIUrl":null,"url":null,"abstract":"Light-emitting diodes (LEDs) have several advantages over traditional incandescent bulbs and compact fluorescent lamps, such as superior energy efficiency, environmental friendliness, and particularly long lifetime (between 25,000 to 100,000 hours). However, this long lifetime of LED proves inconvenient to manufacturers for conducting reliability tests which require the same amount of time to conclude. To overcome such inconvenience, this paper presents a hybrid numerical approach that combines numerical modeling with analytical analysis to predict the lifetime of LEDs. In this paper, a 60W-equivalent 10W phosphor-converted white LED bulb is studied by two numerical approaches. A one-dimensional (1-D) thermal-resistance circuit analysis and a three-dimensional (3-D) hybrid finite element analysis (FEA) are employed to estimate the LEDs' junction temperature in accord to the data obtained through the experiment. The numerical results showed that both 1-D thermal-resistance circuit and the hybrid FEA model are in agreement with the experiment data, thus invaluable to manufacturers who need to carry out reliability testing. Then the estimated junction temperature is used to determine the LED luminaire's lifetime according to the known LM-80 database and TM-21 method.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LED's luminous flux lifetime prediction using a hybrid numerical approach\",\"authors\":\"Kasemsak Kijkanjanapaiboon, Theodore Wagner Kretschmer, Liangbiao Chen, Xuejun Fan, Jiang Zhou\",\"doi\":\"10.1109/EUROSIME.2015.7103112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light-emitting diodes (LEDs) have several advantages over traditional incandescent bulbs and compact fluorescent lamps, such as superior energy efficiency, environmental friendliness, and particularly long lifetime (between 25,000 to 100,000 hours). However, this long lifetime of LED proves inconvenient to manufacturers for conducting reliability tests which require the same amount of time to conclude. To overcome such inconvenience, this paper presents a hybrid numerical approach that combines numerical modeling with analytical analysis to predict the lifetime of LEDs. In this paper, a 60W-equivalent 10W phosphor-converted white LED bulb is studied by two numerical approaches. A one-dimensional (1-D) thermal-resistance circuit analysis and a three-dimensional (3-D) hybrid finite element analysis (FEA) are employed to estimate the LEDs' junction temperature in accord to the data obtained through the experiment. The numerical results showed that both 1-D thermal-resistance circuit and the hybrid FEA model are in agreement with the experiment data, thus invaluable to manufacturers who need to carry out reliability testing. Then the estimated junction temperature is used to determine the LED luminaire's lifetime according to the known LM-80 database and TM-21 method.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

与传统的白炽灯泡和紧凑型荧光灯相比,发光二极管(led)有几个优点,比如更高的能源效率、更环保、特别是更长的使用寿命(在25,000到100,000小时之间)。然而,这种长寿命的LED证明不方便制造商进行可靠性测试,需要相同的时间来得出结论。为了克服这些不便,本文提出了一种将数值模拟与解析分析相结合的混合数值方法来预测led的寿命。本文采用两种数值方法对60w等效的10W白光LED灯泡进行了研究。根据实验得到的数据,采用一维热阻电路分析和三维混合有限元分析来估计led的结温。数值计算结果表明,一维热阻电路和混合有限元模型与实验数据吻合较好,对需要进行可靠性测试的制造商具有重要的参考价值。然后根据已知的LM-80数据库和TM-21方法,使用估计的结温来确定LED灯具的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LED's luminous flux lifetime prediction using a hybrid numerical approach
Light-emitting diodes (LEDs) have several advantages over traditional incandescent bulbs and compact fluorescent lamps, such as superior energy efficiency, environmental friendliness, and particularly long lifetime (between 25,000 to 100,000 hours). However, this long lifetime of LED proves inconvenient to manufacturers for conducting reliability tests which require the same amount of time to conclude. To overcome such inconvenience, this paper presents a hybrid numerical approach that combines numerical modeling with analytical analysis to predict the lifetime of LEDs. In this paper, a 60W-equivalent 10W phosphor-converted white LED bulb is studied by two numerical approaches. A one-dimensional (1-D) thermal-resistance circuit analysis and a three-dimensional (3-D) hybrid finite element analysis (FEA) are employed to estimate the LEDs' junction temperature in accord to the data obtained through the experiment. The numerical results showed that both 1-D thermal-resistance circuit and the hybrid FEA model are in agreement with the experiment data, thus invaluable to manufacturers who need to carry out reliability testing. Then the estimated junction temperature is used to determine the LED luminaire's lifetime according to the known LM-80 database and TM-21 method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信