高温高湿环境对高Tg环氧树脂与铜接头粘接强度的影响

X. Zhao, H. Mitsugi, I. Shohji, T. Kobayashi
{"title":"高温高湿环境对高Tg环氧树脂与铜接头粘接强度的影响","authors":"X. Zhao, H. Mitsugi, I. Shohji, T. Kobayashi","doi":"10.23919/ICEP55381.2022.9795399","DOIUrl":null,"url":null,"abstract":"In this study, the Cu joint with a new high Tg epoxy resin was used as the research object. Tensile test, fracture surface observation and XPS analysis for fracture surface were performed using Cu/resin joints after high temperature and high humidity aging treatment under different conditions. The effect of aging on the adhesion strength and fracture mode of the Cu/resin joint was investigated. The analyzed results indicated that the adhesion strength of Cu/resin joint decreased with an increase in the aging time and aging temperature. Fracture mainly occurred at the Cu/resin and partially occurred at the Cu oxide formed in the surface of Cu.","PeriodicalId":413776,"journal":{"name":"2022 International Conference on Electronics Packaging (ICEP)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of High Temperature and High Humidity Environment on Adhesion Strength of High Tg Epoxy Resin and Copper Joint\",\"authors\":\"X. Zhao, H. Mitsugi, I. Shohji, T. Kobayashi\",\"doi\":\"10.23919/ICEP55381.2022.9795399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the Cu joint with a new high Tg epoxy resin was used as the research object. Tensile test, fracture surface observation and XPS analysis for fracture surface were performed using Cu/resin joints after high temperature and high humidity aging treatment under different conditions. The effect of aging on the adhesion strength and fracture mode of the Cu/resin joint was investigated. The analyzed results indicated that the adhesion strength of Cu/resin joint decreased with an increase in the aging time and aging temperature. Fracture mainly occurred at the Cu/resin and partially occurred at the Cu oxide formed in the surface of Cu.\",\"PeriodicalId\":413776,\"journal\":{\"name\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICEP55381.2022.9795399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP55381.2022.9795399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究以新型高Tg环氧树脂铜接头为研究对象。对高温高湿时效处理后的铜/树脂接头进行了不同条件下的拉伸试验、断口观察和断口XPS分析。研究了时效对铜/树脂接头粘结强度和断裂方式的影响。分析结果表明,随着时效时间和时效温度的增加,铜/树脂接头的粘接强度降低。断裂主要发生在Cu/树脂处,部分发生在Cu表面形成的Cu氧化物处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of High Temperature and High Humidity Environment on Adhesion Strength of High Tg Epoxy Resin and Copper Joint
In this study, the Cu joint with a new high Tg epoxy resin was used as the research object. Tensile test, fracture surface observation and XPS analysis for fracture surface were performed using Cu/resin joints after high temperature and high humidity aging treatment under different conditions. The effect of aging on the adhesion strength and fracture mode of the Cu/resin joint was investigated. The analyzed results indicated that the adhesion strength of Cu/resin joint decreased with an increase in the aging time and aging temperature. Fracture mainly occurred at the Cu/resin and partially occurred at the Cu oxide formed in the surface of Cu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信