基于句法模式识别的基于对象的视频编码器芯片组的设计与实现

A. Martinez-Smith, S. Mathew, R. Sridhar
{"title":"基于句法模式识别的基于对象的视频编码器芯片组的设计与实现","authors":"A. Martinez-Smith, S. Mathew, R. Sridhar","doi":"10.1109/ASIC.1997.617016","DOIUrl":null,"url":null,"abstract":"This paper presents the design and partial implementation of a chip set for a new object-based video coding technique. The hardware algorithm uses unsupervised learning of image contents for efficient second-generation coding of video. Computational complexity is controlled by storing a minimum feature set, upon which higher level contents are defined. Numerical results for test video sequences are given.","PeriodicalId":300310,"journal":{"name":"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of an object-based video coder chip set based on syntactic pattern recognition\",\"authors\":\"A. Martinez-Smith, S. Mathew, R. Sridhar\",\"doi\":\"10.1109/ASIC.1997.617016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and partial implementation of a chip set for a new object-based video coding technique. The hardware algorithm uses unsupervised learning of image contents for efficient second-generation coding of video. Computational complexity is controlled by storing a minimum feature set, upon which higher level contents are defined. Numerical results for test video sequences are given.\",\"PeriodicalId\":300310,\"journal\":{\"name\":\"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASIC.1997.617016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIC.1997.617016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的基于对象的视频编码技术的芯片组的设计和部分实现。硬件算法利用图像内容的无监督学习实现视频的高效第二代编码。通过存储最小特征集来控制计算复杂度,并在此基础上定义更高级别的内容。给出了测试视频序列的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and implementation of an object-based video coder chip set based on syntactic pattern recognition
This paper presents the design and partial implementation of a chip set for a new object-based video coding technique. The hardware algorithm uses unsupervised learning of image contents for efficient second-generation coding of video. Computational complexity is controlled by storing a minimum feature set, upon which higher level contents are defined. Numerical results for test video sequences are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信