LiDARNet:一种边界感知的点云语义分割领域自适应模型

Peng Jiang, S. Saripalli
{"title":"LiDARNet:一种边界感知的点云语义分割领域自适应模型","authors":"Peng Jiang, S. Saripalli","doi":"10.1109/ICRA48506.2021.9561255","DOIUrl":null,"url":null,"abstract":"We present a boundary-aware domain adaptation model for LiDAR scan full-scene semantic segmentation (LiDARNet). Our model can extract both the domain private features and the domain shared features with a two branch structure. We embedded Gated-SCNN into the segmentor component of LiDARNet to learn boundary information while learning to predict full-scene semantic segmentation labels. Moreover, we further reduce the domain gap by inducing the model to learn a mapping between two domains using the domain shared and private features. Additionally, we introduce a new dataset (SemanticUSL1) for domain adaptation for LiDAR point cloud semantic segmentation. The dataset has the same data format and ontology as SemanticKITTI. We conducted experiments on real-world datasets SemanticKITTI, SemanticPOSS, and SemanticUSL, which have differences in channel distributions, reflectivity distributions, diversity of scenes, and sensors setup. Using our approach, we can get a single projection-based Li-DAR full-scene semantic segmentation model working on both domains. Our model can keep almost the same performance on the source domain after adaptation and get an 8%-22% mIoU performance increase in the target domain.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"LiDARNet: A Boundary-Aware Domain Adaptation Model for Point Cloud Semantic Segmentation\",\"authors\":\"Peng Jiang, S. Saripalli\",\"doi\":\"10.1109/ICRA48506.2021.9561255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a boundary-aware domain adaptation model for LiDAR scan full-scene semantic segmentation (LiDARNet). Our model can extract both the domain private features and the domain shared features with a two branch structure. We embedded Gated-SCNN into the segmentor component of LiDARNet to learn boundary information while learning to predict full-scene semantic segmentation labels. Moreover, we further reduce the domain gap by inducing the model to learn a mapping between two domains using the domain shared and private features. Additionally, we introduce a new dataset (SemanticUSL1) for domain adaptation for LiDAR point cloud semantic segmentation. The dataset has the same data format and ontology as SemanticKITTI. We conducted experiments on real-world datasets SemanticKITTI, SemanticPOSS, and SemanticUSL, which have differences in channel distributions, reflectivity distributions, diversity of scenes, and sensors setup. Using our approach, we can get a single projection-based Li-DAR full-scene semantic segmentation model working on both domains. Our model can keep almost the same performance on the source domain after adaptation and get an 8%-22% mIoU performance increase in the target domain.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

提出了一种激光雷达扫描全场景语义分割(LiDARNet)的边界感知域自适应模型。该模型既可以提取领域私有特征,也可以提取具有双分支结构的领域共享特征。我们将gate - scnn嵌入到LiDARNet的分割器组件中,在学习预测全场景语义分割标签的同时学习边界信息。此外,我们还利用领域共享和私有特征诱导模型学习两个领域之间的映射,从而进一步减小了领域差距。此外,我们还引入了一个新的数据集(semantic usl1),用于激光雷达点云语义分割的领域自适应。该数据集具有与SemanticKITTI相同的数据格式和本体。我们在真实世界的数据集SemanticKITTI、SemanticPOSS和SemanticUSL上进行了实验,这些数据集在通道分布、反射率分布、场景多样性和传感器设置方面存在差异。使用我们的方法,我们可以得到一个基于投影的Li-DAR全场景语义分割模型。我们的模型在自适应后在源域可以保持几乎相同的性能,在目标域可以获得8%-22%的mIoU性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LiDARNet: A Boundary-Aware Domain Adaptation Model for Point Cloud Semantic Segmentation
We present a boundary-aware domain adaptation model for LiDAR scan full-scene semantic segmentation (LiDARNet). Our model can extract both the domain private features and the domain shared features with a two branch structure. We embedded Gated-SCNN into the segmentor component of LiDARNet to learn boundary information while learning to predict full-scene semantic segmentation labels. Moreover, we further reduce the domain gap by inducing the model to learn a mapping between two domains using the domain shared and private features. Additionally, we introduce a new dataset (SemanticUSL1) for domain adaptation for LiDAR point cloud semantic segmentation. The dataset has the same data format and ontology as SemanticKITTI. We conducted experiments on real-world datasets SemanticKITTI, SemanticPOSS, and SemanticUSL, which have differences in channel distributions, reflectivity distributions, diversity of scenes, and sensors setup. Using our approach, we can get a single projection-based Li-DAR full-scene semantic segmentation model working on both domains. Our model can keep almost the same performance on the source domain after adaptation and get an 8%-22% mIoU performance increase in the target domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信