{"title":"微型飞行器设计中形态与功能的协同进化","authors":"M. Bugajska, A. Schultz","doi":"10.1109/EH.2002.1029881","DOIUrl":null,"url":null,"abstract":"This paper discusses approaches to cooperative coevolution of for and function for autonomous vehicles, specifically evolving morphology and control for an autonomous micro air vehicle (MAV). The evolution of a sensor suite with minimal size, weight, and power requirements, and reactive strategies for collision-free navigation for the simulated MAV is described. Results are presented for several different coevolutionary approaches to evolution of form and junction (single- and multiple-species models) and for two different control architectures (a rulebase controller based on the SAMUEL learning system and a neural network controller implemented and evolved using ECkit).","PeriodicalId":322028,"journal":{"name":"Proceedings 2002 NASA/DoD Conference on Evolvable Hardware","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Coevolution of form and function in the design of micro air vehicles\",\"authors\":\"M. Bugajska, A. Schultz\",\"doi\":\"10.1109/EH.2002.1029881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses approaches to cooperative coevolution of for and function for autonomous vehicles, specifically evolving morphology and control for an autonomous micro air vehicle (MAV). The evolution of a sensor suite with minimal size, weight, and power requirements, and reactive strategies for collision-free navigation for the simulated MAV is described. Results are presented for several different coevolutionary approaches to evolution of form and junction (single- and multiple-species models) and for two different control architectures (a rulebase controller based on the SAMUEL learning system and a neural network controller implemented and evolved using ECkit).\",\"PeriodicalId\":322028,\"journal\":{\"name\":\"Proceedings 2002 NASA/DoD Conference on Evolvable Hardware\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2002 NASA/DoD Conference on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2002.1029881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2002 NASA/DoD Conference on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2002.1029881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coevolution of form and function in the design of micro air vehicles
This paper discusses approaches to cooperative coevolution of for and function for autonomous vehicles, specifically evolving morphology and control for an autonomous micro air vehicle (MAV). The evolution of a sensor suite with minimal size, weight, and power requirements, and reactive strategies for collision-free navigation for the simulated MAV is described. Results are presented for several different coevolutionary approaches to evolution of form and junction (single- and multiple-species models) and for two different control architectures (a rulebase controller based on the SAMUEL learning system and a neural network controller implemented and evolved using ECkit).