多目标优化问题的遗传共生算法

Jiangming Mao, K. Hirasawa, Jinlu Hu, J. Murata
{"title":"多目标优化问题的遗传共生算法","authors":"Jiangming Mao, K. Hirasawa, Jinlu Hu, J. Murata","doi":"10.1109/ROMAN.2000.892484","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms are often well-suited for optimization problems. Since the mid-1980's, interest in multiobjective problems has been expanding rapidly. Various evolutionary algorithms have been developed which are capable of searching for multiple solutions concurrently in a single run. In this paper, we proposed a genetic symbiosis algorithm (GSA) for multi-object optimization problems (MOP) based on the symbiotic concept found widely in ecosystem. In the proposed GSA for MOP, a set of symbiotic parameters are introduced to modify the fitness of individuals used for reproduction so as to obtain a variety of Pareto solutions corresponding to user's demands. The symbiotic parameters are trained by minimizing a user defined criterion function. Several numerical simulations are carried out to demonstrate the effectiveness of proposed GSA.","PeriodicalId":337709,"journal":{"name":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Genetic symbiosis algorithm for multiobjective optimization problem\",\"authors\":\"Jiangming Mao, K. Hirasawa, Jinlu Hu, J. Murata\",\"doi\":\"10.1109/ROMAN.2000.892484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary algorithms are often well-suited for optimization problems. Since the mid-1980's, interest in multiobjective problems has been expanding rapidly. Various evolutionary algorithms have been developed which are capable of searching for multiple solutions concurrently in a single run. In this paper, we proposed a genetic symbiosis algorithm (GSA) for multi-object optimization problems (MOP) based on the symbiotic concept found widely in ecosystem. In the proposed GSA for MOP, a set of symbiotic parameters are introduced to modify the fitness of individuals used for reproduction so as to obtain a variety of Pareto solutions corresponding to user's demands. The symbiotic parameters are trained by minimizing a user defined criterion function. Several numerical simulations are carried out to demonstrate the effectiveness of proposed GSA.\",\"PeriodicalId\":337709,\"journal\":{\"name\":\"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.2000.892484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2000.892484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

进化算法通常非常适合于优化问题。自20世纪80年代中期以来,人们对多目标问题的兴趣迅速扩大。各种进化算法已经被开发出来,能够在一次运行中同时搜索多个解。基于生态系统中普遍存在的共生概念,提出了一种求解多目标优化问题的遗传共生算法。在提出的MOP的GSA中,引入一组共生参数来修改用于繁殖的个体的适应度,从而获得与用户需求相对应的多种Pareto解。通过最小化用户定义的准则函数来训练共生参数。通过数值模拟验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic symbiosis algorithm for multiobjective optimization problem
Evolutionary algorithms are often well-suited for optimization problems. Since the mid-1980's, interest in multiobjective problems has been expanding rapidly. Various evolutionary algorithms have been developed which are capable of searching for multiple solutions concurrently in a single run. In this paper, we proposed a genetic symbiosis algorithm (GSA) for multi-object optimization problems (MOP) based on the symbiotic concept found widely in ecosystem. In the proposed GSA for MOP, a set of symbiotic parameters are introduced to modify the fitness of individuals used for reproduction so as to obtain a variety of Pareto solutions corresponding to user's demands. The symbiotic parameters are trained by minimizing a user defined criterion function. Several numerical simulations are carried out to demonstrate the effectiveness of proposed GSA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信