从大规模Kinect融合生成拓扑一致的三角形网格

Tristan Igelbrink, T. Wiemann, J. Hertzberg
{"title":"从大规模Kinect融合生成拓扑一致的三角形网格","authors":"Tristan Igelbrink, T. Wiemann, J. Hertzberg","doi":"10.1109/ECMR.2015.7324205","DOIUrl":null,"url":null,"abstract":"Generating polygonal maps from RGB-D data is an active field of research in robotic mapping. Kinect Fusion and related algorithms provide means to generate reconstructions of large environments. However, most available implementations generate topological artifacts like redundant vertices and triangles. In this paper we present a novel data structure that allows to generate topologically consistent triangle meshes from RGB-D data without additional filtering.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generating topologically consistent triangle meshes from large scale Kinect Fusion\",\"authors\":\"Tristan Igelbrink, T. Wiemann, J. Hertzberg\",\"doi\":\"10.1109/ECMR.2015.7324205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating polygonal maps from RGB-D data is an active field of research in robotic mapping. Kinect Fusion and related algorithms provide means to generate reconstructions of large environments. However, most available implementations generate topological artifacts like redundant vertices and triangles. In this paper we present a novel data structure that allows to generate topologically consistent triangle meshes from RGB-D data without additional filtering.\",\"PeriodicalId\":142754,\"journal\":{\"name\":\"2015 European Conference on Mobile Robots (ECMR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2015.7324205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从RGB-D数据生成多边形地图是机器人制图研究的一个活跃领域。Kinect Fusion和相关算法提供了生成大型环境重建的方法。然而,大多数可用的实现都会生成冗余顶点和三角形等拓扑构件。在本文中,我们提出了一种新的数据结构,允许从RGB-D数据生成拓扑一致的三角形网格,而无需额外的过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating topologically consistent triangle meshes from large scale Kinect Fusion
Generating polygonal maps from RGB-D data is an active field of research in robotic mapping. Kinect Fusion and related algorithms provide means to generate reconstructions of large environments. However, most available implementations generate topological artifacts like redundant vertices and triangles. In this paper we present a novel data structure that allows to generate topologically consistent triangle meshes from RGB-D data without additional filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信