一种基于注意力的手部物体重建签名距离场估计方法

Xinkang Zhang, Xinhan Di, Xiaokun Dai, Xinrong Chen
{"title":"一种基于注意力的手部物体重建签名距离场估计方法","authors":"Xinkang Zhang, Xinhan Di, Xiaokun Dai, Xinrong Chen","doi":"10.1109/VRW58643.2023.00180","DOIUrl":null,"url":null,"abstract":"Joint reconstruction of hands and objects from monocular RGB images is a challenging task. In this work, we present a novel hybrid model for joint reconstruction of hands and objects. The model proposed consists of three key modules. Among them, multi-scale attention feature extractor is designed to enhance cross-scale in-formation extraction. Attention-based graph encoder can encode the graph information of the hands. Interacting attention module is applied to fuse information between hands and object. Test re-sults on ObMan dataset [6] show that our method outperforms the state-of-the-art method around 13.97% and 15.75% in $\\mathrm{H}_{\\text{se}}$ and $\\mathrm{H}_{\\text{je}}$ respectively.","PeriodicalId":412598,"journal":{"name":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Attention-Based Signed Distance Field Estimation Method for Hand-Object Reconstruction\",\"authors\":\"Xinkang Zhang, Xinhan Di, Xiaokun Dai, Xinrong Chen\",\"doi\":\"10.1109/VRW58643.2023.00180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint reconstruction of hands and objects from monocular RGB images is a challenging task. In this work, we present a novel hybrid model for joint reconstruction of hands and objects. The model proposed consists of three key modules. Among them, multi-scale attention feature extractor is designed to enhance cross-scale in-formation extraction. Attention-based graph encoder can encode the graph information of the hands. Interacting attention module is applied to fuse information between hands and object. Test re-sults on ObMan dataset [6] show that our method outperforms the state-of-the-art method around 13.97% and 15.75% in $\\\\mathrm{H}_{\\\\text{se}}$ and $\\\\mathrm{H}_{\\\\text{je}}$ respectively.\",\"PeriodicalId\":412598,\"journal\":{\"name\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRW58643.2023.00180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW58643.2023.00180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从单眼RGB图像中重建手和物体的关节是一项具有挑战性的任务。在这项工作中,我们提出了一种用于手和物体关节重建的新型混合模型。该模型由三个关键模块组成。其中,设计了多尺度注意特征提取器,增强了跨尺度信息提取。基于注意力的图形编码器可以对手部的图形信息进行编码。交互注意模块用于融合手与物体之间的信息。在ObMan数据集[6]上的测试结果表明,我们的方法在$\mathrm{H}_{\text{se}}$和$\mathrm{H}_{\text{je}}$上的性能分别优于最先进的方法13.97%和15.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Attention-Based Signed Distance Field Estimation Method for Hand-Object Reconstruction
Joint reconstruction of hands and objects from monocular RGB images is a challenging task. In this work, we present a novel hybrid model for joint reconstruction of hands and objects. The model proposed consists of three key modules. Among them, multi-scale attention feature extractor is designed to enhance cross-scale in-formation extraction. Attention-based graph encoder can encode the graph information of the hands. Interacting attention module is applied to fuse information between hands and object. Test re-sults on ObMan dataset [6] show that our method outperforms the state-of-the-art method around 13.97% and 15.75% in $\mathrm{H}_{\text{se}}$ and $\mathrm{H}_{\text{je}}$ respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信