三量子位纯态的量子算法复杂度

M. Lukac, A. Mandilara
{"title":"三量子位纯态的量子算法复杂度","authors":"M. Lukac, A. Mandilara","doi":"10.1109/ISMVL.2016.37","DOIUrl":null,"url":null,"abstract":"For pure three-qubit states the classification of entanglement is both non-trivial and well understood. In this work, we study the quantum algorithmic complexity introduced in [1] of three-qubit pure states belonging to the most general class of entanglement. Contrary to expectations we find out that the degree of entanglement of states in this class quantified by the measure of 3-tangle, does not correlate with the quantum algorithmic complexity, defined as the length of the shortest circuit needed to prepare the state. For a given entangled state the evaluation of its quantum complexity is done via a pseudo random evolutionary algorithm. This algorithm allows us not only to determine the complexity of a quantum circuit in terms of the number of required quantum gates, but also to estimate another type of complexity related to the time required to obtain the correct answer.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Algorithmic Complexity of Three-Qubit Pure States\",\"authors\":\"M. Lukac, A. Mandilara\",\"doi\":\"10.1109/ISMVL.2016.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For pure three-qubit states the classification of entanglement is both non-trivial and well understood. In this work, we study the quantum algorithmic complexity introduced in [1] of three-qubit pure states belonging to the most general class of entanglement. Contrary to expectations we find out that the degree of entanglement of states in this class quantified by the measure of 3-tangle, does not correlate with the quantum algorithmic complexity, defined as the length of the shortest circuit needed to prepare the state. For a given entangled state the evaluation of its quantum complexity is done via a pseudo random evolutionary algorithm. This algorithm allows us not only to determine the complexity of a quantum circuit in terms of the number of required quantum gates, but also to estimate another type of complexity related to the time required to obtain the correct answer.\",\"PeriodicalId\":246194,\"journal\":{\"name\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2016.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于纯三量子位态,纠缠的分类是非平凡的,而且很容易理解。在这项工作中,我们研究了[1]中引入的属于最一般纠缠类的三量子位纯态的量子算法复杂性。与预期相反,我们发现这类状态的纠缠程度通过3-tangle的度量来量化,与量子算法的复杂性(定义为准备状态所需的最短电路的长度)无关。对于给定的纠缠态,通过伪随机进化算法对其量子复杂度进行评估。该算法不仅允许我们根据所需量子门的数量来确定量子电路的复杂性,而且还可以估计与获得正确答案所需时间相关的另一种复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Algorithmic Complexity of Three-Qubit Pure States
For pure three-qubit states the classification of entanglement is both non-trivial and well understood. In this work, we study the quantum algorithmic complexity introduced in [1] of three-qubit pure states belonging to the most general class of entanglement. Contrary to expectations we find out that the degree of entanglement of states in this class quantified by the measure of 3-tangle, does not correlate with the quantum algorithmic complexity, defined as the length of the shortest circuit needed to prepare the state. For a given entangled state the evaluation of its quantum complexity is done via a pseudo random evolutionary algorithm. This algorithm allows us not only to determine the complexity of a quantum circuit in terms of the number of required quantum gates, but also to estimate another type of complexity related to the time required to obtain the correct answer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信