{"title":"冲击波对颗粒铜微观组织亚强化的本构模拟及实验影响","authors":"A. Sharma, A. Sharma, N. Thakur","doi":"10.30564/jmmr.v4i1.3631","DOIUrl":null,"url":null,"abstract":"Micro-sized copper powder (99.95%; O≤0.3) has been shock-processed with explosives of high detonation velocities of the order of 7.5km/s to observe the structural and microstructural sub-strengthening. Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu. The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry. Numeric simulations have been performed on with Eulerian code dynamics. The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity, pressure, particle velocity and shock pressure in the reactive media. A pin contactor method has been utilized to calculate the detonation pressure experimentally. Wide angled x-ray diffraction studies reveal that the crystalline structure (FCC) of the shocked specimen matches with the un-shocked specimen. Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations. Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities. Micro-hardness tests conducted under variable loads of 0.1kg, 0.05kg and 0.025kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159Hv. Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3% theoretical mean density has been achieved.","PeriodicalId":232294,"journal":{"name":"Journal of Metallic Material Research","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Constitutive Modeling and Experimental Effect of Shock Wave on the Microstructural Sub-strengthening of Granular Copper\",\"authors\":\"A. Sharma, A. Sharma, N. Thakur\",\"doi\":\"10.30564/jmmr.v4i1.3631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-sized copper powder (99.95%; O≤0.3) has been shock-processed with explosives of high detonation velocities of the order of 7.5km/s to observe the structural and microstructural sub-strengthening. Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu. The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry. Numeric simulations have been performed on with Eulerian code dynamics. The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity, pressure, particle velocity and shock pressure in the reactive media. A pin contactor method has been utilized to calculate the detonation pressure experimentally. Wide angled x-ray diffraction studies reveal that the crystalline structure (FCC) of the shocked specimen matches with the un-shocked specimen. Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations. Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities. Micro-hardness tests conducted under variable loads of 0.1kg, 0.05kg and 0.025kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159Hv. Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3% theoretical mean density has been achieved.\",\"PeriodicalId\":232294,\"journal\":{\"name\":\"Journal of Metallic Material Research\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metallic Material Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/jmmr.v4i1.3631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallic Material Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jmmr.v4i1.3631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Constitutive Modeling and Experimental Effect of Shock Wave on the Microstructural Sub-strengthening of Granular Copper
Micro-sized copper powder (99.95%; O≤0.3) has been shock-processed with explosives of high detonation velocities of the order of 7.5km/s to observe the structural and microstructural sub-strengthening. Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu. The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry. Numeric simulations have been performed on with Eulerian code dynamics. The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity, pressure, particle velocity and shock pressure in the reactive media. A pin contactor method has been utilized to calculate the detonation pressure experimentally. Wide angled x-ray diffraction studies reveal that the crystalline structure (FCC) of the shocked specimen matches with the un-shocked specimen. Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations. Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities. Micro-hardness tests conducted under variable loads of 0.1kg, 0.05kg and 0.025kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159Hv. Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3% theoretical mean density has been achieved.