从社交网络分析角度看推特微博环境中的学生互动

K. Stepanyan, Kerstin Borau, C. Ullrich
{"title":"从社交网络分析角度看推特微博环境中的学生互动","authors":"K. Stepanyan, Kerstin Borau, C. Ullrich","doi":"10.1109/ICALT.2010.27","DOIUrl":null,"url":null,"abstract":"This paper summarises the analyses of participant interaction within the Twitter microblogging environment. The study employs longitudinal probabilistic social network analysis (SNA) techniques to identify the patterns and trends of network dynamics. It explores the associations of student achievement records with the observed network. The results indicate tendencies towards: [i] reciprocal interaction, and [ii] adoption of a selective approach in communication over time, implying that students tend to communicate with fewer peers over time. The evaluations that examine achievement score attributes indicate [iii] network homogeneity and popularity effects associated to achievement scores – suggesting greater interaction among students of similar levels and more attention to higher achieving students.","PeriodicalId":166491,"journal":{"name":"2010 10th IEEE International Conference on Advanced Learning Technologies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"A Social Network Analysis Perspective on Student Interaction within the Twitter Microblogging Environment\",\"authors\":\"K. Stepanyan, Kerstin Borau, C. Ullrich\",\"doi\":\"10.1109/ICALT.2010.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarises the analyses of participant interaction within the Twitter microblogging environment. The study employs longitudinal probabilistic social network analysis (SNA) techniques to identify the patterns and trends of network dynamics. It explores the associations of student achievement records with the observed network. The results indicate tendencies towards: [i] reciprocal interaction, and [ii] adoption of a selective approach in communication over time, implying that students tend to communicate with fewer peers over time. The evaluations that examine achievement score attributes indicate [iii] network homogeneity and popularity effects associated to achievement scores – suggesting greater interaction among students of similar levels and more attention to higher achieving students.\",\"PeriodicalId\":166491,\"journal\":{\"name\":\"2010 10th IEEE International Conference on Advanced Learning Technologies\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th IEEE International Conference on Advanced Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2010.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2010.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

本文总结了参与者在 Twitter 微博客环境中的互动分析。研究采用了纵向概率社会网络分析(SNA)技术,以确定网络动态的模式和趋势。它探讨了学生成绩记录与观察到的网络之间的关联。结果显示了以下趋势[i) 互惠互动;[ii] 随着时间的推移,在交流中采用选择性方法,这意味着随着时间的推移,学生倾向于与较少的同伴交流。对成绩分数属性进行的评估表明,[iii] 网络同质性和受欢迎程度效应与成绩分数相关--这表明水平相近的学生之间有更多的互动,成绩较好的学生受到更多的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Social Network Analysis Perspective on Student Interaction within the Twitter Microblogging Environment
This paper summarises the analyses of participant interaction within the Twitter microblogging environment. The study employs longitudinal probabilistic social network analysis (SNA) techniques to identify the patterns and trends of network dynamics. It explores the associations of student achievement records with the observed network. The results indicate tendencies towards: [i] reciprocal interaction, and [ii] adoption of a selective approach in communication over time, implying that students tend to communicate with fewer peers over time. The evaluations that examine achievement score attributes indicate [iii] network homogeneity and popularity effects associated to achievement scores – suggesting greater interaction among students of similar levels and more attention to higher achieving students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信