集论自回归谱估计

P. L. Combettes, H. Trussell
{"title":"集论自回归谱估计","authors":"P. L. Combettes, H. Trussell","doi":"10.1109/SPECT.1990.205587","DOIUrl":null,"url":null,"abstract":"Presents the set theoretic approach in autoregressive (AR) spectral estimation. Conventional AR estimates, which are based on some criterion of optimality, may violate a priori constraints on the problem. In the framework of set theoretic estimation, one produces an estimate of the regression vector which has the property of being consistent with all the available a priori knowledge. Each known property being associated with a set in the regression space, the problem is then to find a common point of these sets.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Set theoretic autoregressive spectral estimation\",\"authors\":\"P. L. Combettes, H. Trussell\",\"doi\":\"10.1109/SPECT.1990.205587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents the set theoretic approach in autoregressive (AR) spectral estimation. Conventional AR estimates, which are based on some criterion of optimality, may violate a priori constraints on the problem. In the framework of set theoretic estimation, one produces an estimate of the regression vector which has the property of being consistent with all the available a priori knowledge. Each known property being associated with a set in the regression space, the problem is then to find a common point of these sets.<<ETX>>\",\"PeriodicalId\":117661,\"journal\":{\"name\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPECT.1990.205587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了自回归(AR)谱估计的集合理论方法。传统的AR估计是基于一些最优准则的,可能会违反问题的先验约束。在集合论估计的框架中,对回归向量的估计具有与所有可用的先验知识一致的性质。每个已知属性都与回归空间中的一个集合相关联,然后问题是找到这些集合的公点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set theoretic autoregressive spectral estimation
Presents the set theoretic approach in autoregressive (AR) spectral estimation. Conventional AR estimates, which are based on some criterion of optimality, may violate a priori constraints on the problem. In the framework of set theoretic estimation, one produces an estimate of the regression vector which has the property of being consistent with all the available a priori knowledge. Each known property being associated with a set in the regression space, the problem is then to find a common point of these sets.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信