{"title":"并行和可扩展的定制计算实时流体模拟上的集群节点与四个紧密耦合的fpga","authors":"K. Sano, R. Ito, Hayato Suzuki, Yoshiaki Kono","doi":"10.1109/FPL.2013.6645625","DOIUrl":null,"url":null,"abstract":"Summary form only given. Numerical simulation based on computational fluid dynamics (CFD) is now an indispensable technique especially in industry due to its acquisition capability of various data at a lower cost than experiments using a wind tunnel. The lattice Boltzmann method (LBM) is one of the CFD schemes, which is used to compute various problems including multiphase flow. LBM has good parallelism, but simultaneously requires many data to compute each lattice point, resulting in a low operational intensity. Consequently, the sustained performance of LBM is limited by memory bandwidth rather than arithmetic performance when computed by using general-purpose processors and GPUs. To make matters worse, insufficient bandwidth and high-latency of an interconnection network cause a relatively big overhead in parallel computing, especially in the case of strong-scaling.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel and scalable custom computing for real-time fluid simulation on a cluster node with four tightly-coupled FPGAs\",\"authors\":\"K. Sano, R. Ito, Hayato Suzuki, Yoshiaki Kono\",\"doi\":\"10.1109/FPL.2013.6645625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Numerical simulation based on computational fluid dynamics (CFD) is now an indispensable technique especially in industry due to its acquisition capability of various data at a lower cost than experiments using a wind tunnel. The lattice Boltzmann method (LBM) is one of the CFD schemes, which is used to compute various problems including multiphase flow. LBM has good parallelism, but simultaneously requires many data to compute each lattice point, resulting in a low operational intensity. Consequently, the sustained performance of LBM is limited by memory bandwidth rather than arithmetic performance when computed by using general-purpose processors and GPUs. To make matters worse, insufficient bandwidth and high-latency of an interconnection network cause a relatively big overhead in parallel computing, especially in the case of strong-scaling.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel and scalable custom computing for real-time fluid simulation on a cluster node with four tightly-coupled FPGAs
Summary form only given. Numerical simulation based on computational fluid dynamics (CFD) is now an indispensable technique especially in industry due to its acquisition capability of various data at a lower cost than experiments using a wind tunnel. The lattice Boltzmann method (LBM) is one of the CFD schemes, which is used to compute various problems including multiphase flow. LBM has good parallelism, but simultaneously requires many data to compute each lattice point, resulting in a low operational intensity. Consequently, the sustained performance of LBM is limited by memory bandwidth rather than arithmetic performance when computed by using general-purpose processors and GPUs. To make matters worse, insufficient bandwidth and high-latency of an interconnection network cause a relatively big overhead in parallel computing, especially in the case of strong-scaling.