A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid
{"title":"监督机器学习中的元学习","authors":"A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid","doi":"10.1109/SKIMA57145.2022.10029537","DOIUrl":null,"url":null,"abstract":"In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.","PeriodicalId":277436,"journal":{"name":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Learning in Supervised Machine Learning\",\"authors\":\"A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid\",\"doi\":\"10.1109/SKIMA57145.2022.10029537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.\",\"PeriodicalId\":277436,\"journal\":{\"name\":\"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA57145.2022.10029537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA57145.2022.10029537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.