{"title":"分离木质纤维素生物质的非等温燃烧动力学研究——以枣椰树生物质废料纤维素为例","authors":"Emmanuel Galiwango, A. Al-Marzouqi","doi":"10.5772/intechopen.93549","DOIUrl":null,"url":null,"abstract":"The efficient and high yielding acid-base and Organosolv methods were studied for cellulose isolation from date palm lignocellulose waste biomass and thereafter analyzed for nonisothermal kinetic and thermodynamic parameter determination using model-free methods. The structural and chemical characterization of the isolated celluloses revealed structures and functional groups characteristics of cellulose. Thermal decomposition analysis revealed one major peak with average mass loss of 72.51 ± 0.7% and 55.82 ± 1.1% for the acid-base and Organosolv method, respectively. This occurred in the temperature region between 250 and 350°C associated with cellulose degradation and contrasted with the three peaks detected in the original biomass. The kinetic and thermodynamic results revealed a strong relationship between the average activation energy and average change in enthalpy with a difference of 5.23 and 147.07 kJmol−1 for Organosolv and acid-base methods, respectively. The Gibbs’s free energy results revealed that Organosolv cellulose pyrolysis would reach equilibrium faster in KAS, Starink and FWO models with average ΔG values of 115.80 ± 36.62, 115.89 ± 36.65, and 119.45 ± 37.98 kJmol−1, respectively. The acid-base method for FWO model gave negative entropy values. The Malek method revealed the acid-base and Organoslv cellulose pyrolysis mechanism as (gα=−ln1−α14) and (gα=−ln1−α13), characterized by random nucleation and growth, respectively.","PeriodicalId":221816,"journal":{"name":"Biotechnological Applications of Biomass","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of Nonisothermal Combustion Kinetics of Isolated Lignocellulosic Biomass: A Case Study of Cellulose from Date Palm Biomass Waste\",\"authors\":\"Emmanuel Galiwango, A. Al-Marzouqi\",\"doi\":\"10.5772/intechopen.93549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient and high yielding acid-base and Organosolv methods were studied for cellulose isolation from date palm lignocellulose waste biomass and thereafter analyzed for nonisothermal kinetic and thermodynamic parameter determination using model-free methods. The structural and chemical characterization of the isolated celluloses revealed structures and functional groups characteristics of cellulose. Thermal decomposition analysis revealed one major peak with average mass loss of 72.51 ± 0.7% and 55.82 ± 1.1% for the acid-base and Organosolv method, respectively. This occurred in the temperature region between 250 and 350°C associated with cellulose degradation and contrasted with the three peaks detected in the original biomass. The kinetic and thermodynamic results revealed a strong relationship between the average activation energy and average change in enthalpy with a difference of 5.23 and 147.07 kJmol−1 for Organosolv and acid-base methods, respectively. The Gibbs’s free energy results revealed that Organosolv cellulose pyrolysis would reach equilibrium faster in KAS, Starink and FWO models with average ΔG values of 115.80 ± 36.62, 115.89 ± 36.65, and 119.45 ± 37.98 kJmol−1, respectively. The acid-base method for FWO model gave negative entropy values. The Malek method revealed the acid-base and Organoslv cellulose pyrolysis mechanism as (gα=−ln1−α14) and (gα=−ln1−α13), characterized by random nucleation and growth, respectively.\",\"PeriodicalId\":221816,\"journal\":{\"name\":\"Biotechnological Applications of Biomass\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnological Applications of Biomass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.93549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnological Applications of Biomass","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.93549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Nonisothermal Combustion Kinetics of Isolated Lignocellulosic Biomass: A Case Study of Cellulose from Date Palm Biomass Waste
The efficient and high yielding acid-base and Organosolv methods were studied for cellulose isolation from date palm lignocellulose waste biomass and thereafter analyzed for nonisothermal kinetic and thermodynamic parameter determination using model-free methods. The structural and chemical characterization of the isolated celluloses revealed structures and functional groups characteristics of cellulose. Thermal decomposition analysis revealed one major peak with average mass loss of 72.51 ± 0.7% and 55.82 ± 1.1% for the acid-base and Organosolv method, respectively. This occurred in the temperature region between 250 and 350°C associated with cellulose degradation and contrasted with the three peaks detected in the original biomass. The kinetic and thermodynamic results revealed a strong relationship between the average activation energy and average change in enthalpy with a difference of 5.23 and 147.07 kJmol−1 for Organosolv and acid-base methods, respectively. The Gibbs’s free energy results revealed that Organosolv cellulose pyrolysis would reach equilibrium faster in KAS, Starink and FWO models with average ΔG values of 115.80 ± 36.62, 115.89 ± 36.65, and 119.45 ± 37.98 kJmol−1, respectively. The acid-base method for FWO model gave negative entropy values. The Malek method revealed the acid-base and Organoslv cellulose pyrolysis mechanism as (gα=−ln1−α14) and (gα=−ln1−α13), characterized by random nucleation and growth, respectively.