向量自回归模型在海量mimo信道去噪中的应用

Dmitry Artemasov, Alexander Blagodarnyi, Alexander Sherstobitov, V. Lyashev
{"title":"向量自回归模型在海量mimo信道去噪中的应用","authors":"Dmitry Artemasov, Alexander Blagodarnyi, Alexander Sherstobitov, V. Lyashev","doi":"10.1109/BalkanCom58402.2023.10167957","DOIUrl":null,"url":null,"abstract":"In modern wireless communication systems Multiple-Input Multiple-Output (MIMO) technology allows to greatly increase power efficiency, serving area, and the overall cell throughput with the antenna array beamforming. MIMO systems require accurate channel state knowledge to apply correct precoding. In 5G Time Division Duplex (TDD) systems Channel State Information (CSI) is obtained via Sounding Reference Signals (SRS) transmitted by User Equipments (UEs). UEs have limited power capabilities and thus cannot achieve high uplink (UL) signal-to-noise ratio (SNR) on gNodeB (gNB) in large bandwidth. There are multiple methods that can be applied to improve the accuracy of the channel estimation (CE) in noisy conditions. In this paper the beam-delay Vector Autoregression (VAR) denoising method is proposed. The pre- and post-processing steps are described. The performance of VAR denoising is compared with the baseline approaches. The obtained results and possible improvements are discussed.","PeriodicalId":363999,"journal":{"name":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector Autoregression Model Utilization for Massive-MIMO Channel Denoising\",\"authors\":\"Dmitry Artemasov, Alexander Blagodarnyi, Alexander Sherstobitov, V. Lyashev\",\"doi\":\"10.1109/BalkanCom58402.2023.10167957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern wireless communication systems Multiple-Input Multiple-Output (MIMO) technology allows to greatly increase power efficiency, serving area, and the overall cell throughput with the antenna array beamforming. MIMO systems require accurate channel state knowledge to apply correct precoding. In 5G Time Division Duplex (TDD) systems Channel State Information (CSI) is obtained via Sounding Reference Signals (SRS) transmitted by User Equipments (UEs). UEs have limited power capabilities and thus cannot achieve high uplink (UL) signal-to-noise ratio (SNR) on gNodeB (gNB) in large bandwidth. There are multiple methods that can be applied to improve the accuracy of the channel estimation (CE) in noisy conditions. In this paper the beam-delay Vector Autoregression (VAR) denoising method is proposed. The pre- and post-processing steps are described. The performance of VAR denoising is compared with the baseline approaches. The obtained results and possible improvements are discussed.\",\"PeriodicalId\":363999,\"journal\":{\"name\":\"2023 International Balkan Conference on Communications and Networking (BalkanCom)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Balkan Conference on Communications and Networking (BalkanCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BalkanCom58402.2023.10167957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom58402.2023.10167957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代无线通信系统中,多输入多输出(MIMO)技术允许通过天线阵列波束形成大大提高功率效率、服务面积和整体小区吞吐量。MIMO系统需要准确的信道状态知识来应用正确的预编码。在5G时分双工(TDD)系统中,信道状态信息(CSI)是通过用户设备(ue)发送的探测参考信号(SRS)获得的。终端的功率能力有限,无法在大带宽下实现gNB (gNB)上的高信噪比。有多种方法可用于提高噪声条件下信道估计的精度。本文提出了波束延迟向量自回归(VAR)去噪方法。描述了预处理和后处理步骤。将VAR去噪方法与基线方法进行了比较。讨论了所得结果和可能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector Autoregression Model Utilization for Massive-MIMO Channel Denoising
In modern wireless communication systems Multiple-Input Multiple-Output (MIMO) technology allows to greatly increase power efficiency, serving area, and the overall cell throughput with the antenna array beamforming. MIMO systems require accurate channel state knowledge to apply correct precoding. In 5G Time Division Duplex (TDD) systems Channel State Information (CSI) is obtained via Sounding Reference Signals (SRS) transmitted by User Equipments (UEs). UEs have limited power capabilities and thus cannot achieve high uplink (UL) signal-to-noise ratio (SNR) on gNodeB (gNB) in large bandwidth. There are multiple methods that can be applied to improve the accuracy of the channel estimation (CE) in noisy conditions. In this paper the beam-delay Vector Autoregression (VAR) denoising method is proposed. The pre- and post-processing steps are described. The performance of VAR denoising is compared with the baseline approaches. The obtained results and possible improvements are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信