基于非线性函数和距离的调制分类

Wei-Cheng Pao, Yung-Fang Chen
{"title":"基于非线性函数和距离的调制分类","authors":"Wei-Cheng Pao, Yung-Fang Chen","doi":"10.1109/ITST.2012.6425211","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel modulation classification algorithm based on high-order cumulants, and calculation of Euclidian distances. Non-linear transformation functions are also introduced to change the characteristics of the signals for calculating the multi-dimensional features. Simulation results are presented to demonstrate the superior performance of the proposed scheme compared with the existing hierarchical scheme. The averaged improvement for three different sample sizes is at least 18% over an SNR range of -5dB to 10dB of SNR for the four-class problem.","PeriodicalId":143706,"journal":{"name":"2012 12th International Conference on ITS Telecommunications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation classification based on nonlinear functions and distances\",\"authors\":\"Wei-Cheng Pao, Yung-Fang Chen\",\"doi\":\"10.1109/ITST.2012.6425211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel modulation classification algorithm based on high-order cumulants, and calculation of Euclidian distances. Non-linear transformation functions are also introduced to change the characteristics of the signals for calculating the multi-dimensional features. Simulation results are presented to demonstrate the superior performance of the proposed scheme compared with the existing hierarchical scheme. The averaged improvement for three different sample sizes is at least 18% over an SNR range of -5dB to 10dB of SNR for the four-class problem.\",\"PeriodicalId\":143706,\"journal\":{\"name\":\"2012 12th International Conference on ITS Telecommunications\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on ITS Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITST.2012.6425211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on ITS Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITST.2012.6425211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于高阶累积量和欧氏距离计算的调制分类算法。同时引入非线性变换函数来改变信号的特征,从而计算出信号的多维特征。仿真结果表明,与现有的分层方案相比,该方案具有优越的性能。对于四类问题,在信噪比为-5dB至10dB的信噪比范围内,三种不同样本量的平均改进至少为18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation classification based on nonlinear functions and distances
In this paper, we propose a novel modulation classification algorithm based on high-order cumulants, and calculation of Euclidian distances. Non-linear transformation functions are also introduced to change the characteristics of the signals for calculating the multi-dimensional features. Simulation results are presented to demonstrate the superior performance of the proposed scheme compared with the existing hierarchical scheme. The averaged improvement for three different sample sizes is at least 18% over an SNR range of -5dB to 10dB of SNR for the four-class problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信