{"title":"基于生产的认知模型作为强化学习算法的测试套件","authors":"Adrian Brasoveanu","doi":"10.18653/v1/2020.cmcl-1.3","DOIUrl":null,"url":null,"abstract":"We introduce a framework in which production-rule based computational cognitive modeling and Reinforcement Learning can systematically interact and inform each other. We focus on linguistic applications because the sophisticated rule-based cognitive models needed to capture linguistic behavioral data promise to provide a stringent test suite for RL algorithms, connecting RL algorithms to both accuracy and reaction-time experimental data. Thus, we open a path towards assembling an experimentally rigorous and cognitively realistic benchmark for RL algorithms. We extend our previous work on lexical decision tasks and tabular RL algorithms (Brasoveanu and Dotlačil, 2020b) with a discussion of neural-network based approaches, and a discussion of how parsing can be formalized as an RL problem.","PeriodicalId":428409,"journal":{"name":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production-based Cognitive Models as a Test Suite for Reinforcement Learning Algorithms\",\"authors\":\"Adrian Brasoveanu\",\"doi\":\"10.18653/v1/2020.cmcl-1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a framework in which production-rule based computational cognitive modeling and Reinforcement Learning can systematically interact and inform each other. We focus on linguistic applications because the sophisticated rule-based cognitive models needed to capture linguistic behavioral data promise to provide a stringent test suite for RL algorithms, connecting RL algorithms to both accuracy and reaction-time experimental data. Thus, we open a path towards assembling an experimentally rigorous and cognitively realistic benchmark for RL algorithms. We extend our previous work on lexical decision tasks and tabular RL algorithms (Brasoveanu and Dotlačil, 2020b) with a discussion of neural-network based approaches, and a discussion of how parsing can be formalized as an RL problem.\",\"PeriodicalId\":428409,\"journal\":{\"name\":\"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.cmcl-1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.cmcl-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production-based Cognitive Models as a Test Suite for Reinforcement Learning Algorithms
We introduce a framework in which production-rule based computational cognitive modeling and Reinforcement Learning can systematically interact and inform each other. We focus on linguistic applications because the sophisticated rule-based cognitive models needed to capture linguistic behavioral data promise to provide a stringent test suite for RL algorithms, connecting RL algorithms to both accuracy and reaction-time experimental data. Thus, we open a path towards assembling an experimentally rigorous and cognitively realistic benchmark for RL algorithms. We extend our previous work on lexical decision tasks and tabular RL algorithms (Brasoveanu and Dotlačil, 2020b) with a discussion of neural-network based approaches, and a discussion of how parsing can be formalized as an RL problem.