{"title":"集成微通道冷却的3d集成电路热建模","authors":"H. Mizunuma, Chia-Lin Yang, Yi-Chang Lu","doi":"10.1145/1687399.1687447","DOIUrl":null,"url":null,"abstract":"Integrated microchannel liquid-cooling technology is envisioned as a viable solution to alleviate an increasing thermal stress imposed by 3D stacked ICs. Thermal modeling for microchannel cooling is challenging due to its complicated thermal-wake effect, a localized temperature wake phenomenon downstream of a heated source in the flow. This paper presents a fast and accurate thermal-wake aware thermal model for integrated microchannel 3D ICs. Validation results show the proposed thermal model achieves more than 400× speed up and only 2.0% error in comparison with a commercial numerical simulation tool. We also demonstrate the use of the proposed thermal model for thermal optimization during the IC placement stage. We find that due to the thermal-wake effect, tiles are placed in the descending order of power magnitude along the flow direction. We also find that modeling thermal-wakes is critical for generating a thermal-aware placement for integrated microchannel-cooled 3D IC. It could result in up to 25°C peak temperature difference according to our experiments.","PeriodicalId":256358,"journal":{"name":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Thermal modeling for 3D-ICs with integrated microchannel cooling\",\"authors\":\"H. Mizunuma, Chia-Lin Yang, Yi-Chang Lu\",\"doi\":\"10.1145/1687399.1687447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated microchannel liquid-cooling technology is envisioned as a viable solution to alleviate an increasing thermal stress imposed by 3D stacked ICs. Thermal modeling for microchannel cooling is challenging due to its complicated thermal-wake effect, a localized temperature wake phenomenon downstream of a heated source in the flow. This paper presents a fast and accurate thermal-wake aware thermal model for integrated microchannel 3D ICs. Validation results show the proposed thermal model achieves more than 400× speed up and only 2.0% error in comparison with a commercial numerical simulation tool. We also demonstrate the use of the proposed thermal model for thermal optimization during the IC placement stage. We find that due to the thermal-wake effect, tiles are placed in the descending order of power magnitude along the flow direction. We also find that modeling thermal-wakes is critical for generating a thermal-aware placement for integrated microchannel-cooled 3D IC. It could result in up to 25°C peak temperature difference according to our experiments.\",\"PeriodicalId\":256358,\"journal\":{\"name\":\"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1687399.1687447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1687399.1687447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal modeling for 3D-ICs with integrated microchannel cooling
Integrated microchannel liquid-cooling technology is envisioned as a viable solution to alleviate an increasing thermal stress imposed by 3D stacked ICs. Thermal modeling for microchannel cooling is challenging due to its complicated thermal-wake effect, a localized temperature wake phenomenon downstream of a heated source in the flow. This paper presents a fast and accurate thermal-wake aware thermal model for integrated microchannel 3D ICs. Validation results show the proposed thermal model achieves more than 400× speed up and only 2.0% error in comparison with a commercial numerical simulation tool. We also demonstrate the use of the proposed thermal model for thermal optimization during the IC placement stage. We find that due to the thermal-wake effect, tiles are placed in the descending order of power magnitude along the flow direction. We also find that modeling thermal-wakes is critical for generating a thermal-aware placement for integrated microchannel-cooled 3D IC. It could result in up to 25°C peak temperature difference according to our experiments.