门级网表硬件木马检测的改进COTD技术

H. Salmani
{"title":"门级网表硬件木马检测的改进COTD技术","authors":"H. Salmani","doi":"10.1145/3526241.3530835","DOIUrl":null,"url":null,"abstract":"Hardware Trojans (HTs) have introduced serious security concerns into the integrated circuit design flow as they can undermine circuit operations by leaking sensitive information, causing malfunction, or similar attacks. An earlier-introduced HT detection technique in gate-level netlist, the Controllability and Observability for hardware Trojan Detection (COTD) technique detects HTs based on controllability and observability signals in a circuit and presents a static analysis based on an unsupervised machine learning model to identify HT signals in the circuit. While COTD detects the existence of HTs in a circuit, some work has highlighted the shortcoming of COTD in detecting some HT signals that present similar features as genuine signals. To address this shortcoming, this paper presents an improved COTD technique. The improved COTD technique introduces an iterative unsupervised machine-learning technique to isolate HT signals. Furthermore, the improved COTD is equipped with the Gradual-N-Justification (GNJ) technique to reduce false-positive rates in detecting HT signals. The improved COTD technique is applied to several different combinations of full-scan and partial scan circuits tampered with hard-to-detect sequential HTs. To realize valid and hard-to-detect HTs, a configurable HT insertion platform is utilized. The comprehensive results have shown that the improved COTD is highly scalable. Furthermore, the improved COTD technique does not miss a HT circuit if exists and it offers a false-positive rate as low as 3.4%, on average.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Improved COTD Technique for Hardware Trojan Detection in Gate-level Netlist\",\"authors\":\"H. Salmani\",\"doi\":\"10.1145/3526241.3530835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware Trojans (HTs) have introduced serious security concerns into the integrated circuit design flow as they can undermine circuit operations by leaking sensitive information, causing malfunction, or similar attacks. An earlier-introduced HT detection technique in gate-level netlist, the Controllability and Observability for hardware Trojan Detection (COTD) technique detects HTs based on controllability and observability signals in a circuit and presents a static analysis based on an unsupervised machine learning model to identify HT signals in the circuit. While COTD detects the existence of HTs in a circuit, some work has highlighted the shortcoming of COTD in detecting some HT signals that present similar features as genuine signals. To address this shortcoming, this paper presents an improved COTD technique. The improved COTD technique introduces an iterative unsupervised machine-learning technique to isolate HT signals. Furthermore, the improved COTD is equipped with the Gradual-N-Justification (GNJ) technique to reduce false-positive rates in detecting HT signals. The improved COTD technique is applied to several different combinations of full-scan and partial scan circuits tampered with hard-to-detect sequential HTs. To realize valid and hard-to-detect HTs, a configurable HT insertion platform is utilized. The comprehensive results have shown that the improved COTD is highly scalable. Furthermore, the improved COTD technique does not miss a HT circuit if exists and it offers a false-positive rate as low as 3.4%, on average.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

硬件木马(ht)已经给集成电路设计流程带来了严重的安全问题,因为它们可以通过泄露敏感信息、引起故障或类似攻击来破坏电路运行。硬件木马检测(COTD)技术是门级网表中较早介绍的高温检测技术,它基于电路中的可控性和可观察性信号来检测高温,并提出了一种基于无监督机器学习模型的静态分析方法来识别电路中的高温信号。虽然COTD可以检测电路中是否存在高温信号,但一些工作强调了COTD在检测某些与真实信号具有相似特征的高温信号方面的缺点。针对这一缺点,本文提出了一种改进的COTD技术。改进的COTD技术引入了一种迭代的无监督机器学习技术来隔离高温信号。此外,改进的COTD还配备了逐渐n -校正(GNJ)技术,以降低检测高温信号的假阳性率。改进的COTD技术应用于几种不同的全扫描和部分扫描电路的组合,这些电路被难以检测的顺序高温干扰。为了实现有效且难以检测的高温感应,采用了可配置的高温感应插入平台。综合结果表明,改进后的COTD具有很高的可扩展性。此外,改进的COTD技术不会遗漏高温电路,其假阳性率平均低至3.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Improved COTD Technique for Hardware Trojan Detection in Gate-level Netlist
Hardware Trojans (HTs) have introduced serious security concerns into the integrated circuit design flow as they can undermine circuit operations by leaking sensitive information, causing malfunction, or similar attacks. An earlier-introduced HT detection technique in gate-level netlist, the Controllability and Observability for hardware Trojan Detection (COTD) technique detects HTs based on controllability and observability signals in a circuit and presents a static analysis based on an unsupervised machine learning model to identify HT signals in the circuit. While COTD detects the existence of HTs in a circuit, some work has highlighted the shortcoming of COTD in detecting some HT signals that present similar features as genuine signals. To address this shortcoming, this paper presents an improved COTD technique. The improved COTD technique introduces an iterative unsupervised machine-learning technique to isolate HT signals. Furthermore, the improved COTD is equipped with the Gradual-N-Justification (GNJ) technique to reduce false-positive rates in detecting HT signals. The improved COTD technique is applied to several different combinations of full-scan and partial scan circuits tampered with hard-to-detect sequential HTs. To realize valid and hard-to-detect HTs, a configurable HT insertion platform is utilized. The comprehensive results have shown that the improved COTD is highly scalable. Furthermore, the improved COTD technique does not miss a HT circuit if exists and it offers a false-positive rate as low as 3.4%, on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信