J. R. Foerster, V. Somayazulu, Subhasish Subhasish
{"title":"一种用于超宽带通信的多频带系统架构","authors":"J. R. Foerster, V. Somayazulu, Subhasish Subhasish","doi":"10.1109/MILCOM.2003.1290243","DOIUrl":null,"url":null,"abstract":"The FCC ruling in 2002 allowing for the unlicensed deployment of ultra-wideband (UWB) devices for communications purposes in the 3.1-10.6 GHz band has sparked great interest in the industry. In particular, the IEEE 802.15.3a task group is currently developing a standard for high-rate, short-range wireless communication systems that is expected to use UWB technology. One of the main challenges for UWB system design is minimizing the possible interference to other narrowband systems, while, at the same time, dealing with the large interference that may be coming from these narrowband systems into the UWB receiver. Traditional UWB systems have used very short time impulses that occupy several giga-hertz of bandwidth. This approach makes it difficult to efficiently avoid other system that may be sharing the same band. This paper will describe a channel model that has been adopted by the industry to evaluate the merits of different UWB physical layer approaches and introduce an alternate approach to a high-rate UWB system that is based upon the concatenation of multiple narrower band UWB waveforms.","PeriodicalId":435910,"journal":{"name":"IEEE Military Communications Conference, 2003. MILCOM 2003.","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A multibanded system architecture for ultra-wideband communications\",\"authors\":\"J. R. Foerster, V. Somayazulu, Subhasish Subhasish\",\"doi\":\"10.1109/MILCOM.2003.1290243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FCC ruling in 2002 allowing for the unlicensed deployment of ultra-wideband (UWB) devices for communications purposes in the 3.1-10.6 GHz band has sparked great interest in the industry. In particular, the IEEE 802.15.3a task group is currently developing a standard for high-rate, short-range wireless communication systems that is expected to use UWB technology. One of the main challenges for UWB system design is minimizing the possible interference to other narrowband systems, while, at the same time, dealing with the large interference that may be coming from these narrowband systems into the UWB receiver. Traditional UWB systems have used very short time impulses that occupy several giga-hertz of bandwidth. This approach makes it difficult to efficiently avoid other system that may be sharing the same band. This paper will describe a channel model that has been adopted by the industry to evaluate the merits of different UWB physical layer approaches and introduce an alternate approach to a high-rate UWB system that is based upon the concatenation of multiple narrower band UWB waveforms.\",\"PeriodicalId\":435910,\"journal\":{\"name\":\"IEEE Military Communications Conference, 2003. MILCOM 2003.\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Military Communications Conference, 2003. MILCOM 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2003.1290243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Military Communications Conference, 2003. MILCOM 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2003.1290243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multibanded system architecture for ultra-wideband communications
The FCC ruling in 2002 allowing for the unlicensed deployment of ultra-wideband (UWB) devices for communications purposes in the 3.1-10.6 GHz band has sparked great interest in the industry. In particular, the IEEE 802.15.3a task group is currently developing a standard for high-rate, short-range wireless communication systems that is expected to use UWB technology. One of the main challenges for UWB system design is minimizing the possible interference to other narrowband systems, while, at the same time, dealing with the large interference that may be coming from these narrowband systems into the UWB receiver. Traditional UWB systems have used very short time impulses that occupy several giga-hertz of bandwidth. This approach makes it difficult to efficiently avoid other system that may be sharing the same band. This paper will describe a channel model that has been adopted by the industry to evaluate the merits of different UWB physical layer approaches and introduce an alternate approach to a high-rate UWB system that is based upon the concatenation of multiple narrower band UWB waveforms.