基于图论和多重伯努利滤波器的多可分辨群目标估计

Weifeng Liu, Shujun Zhu, Chenglin Wen
{"title":"基于图论和多重伯努利滤波器的多可分辨群目标估计","authors":"Weifeng Liu, Shujun Zhu, Chenglin Wen","doi":"10.1109/ICCAIS.2016.7822429","DOIUrl":null,"url":null,"abstract":"This paper considers multiple resolvable group target estimation under clutter environment. We first build the structure for the resolvable group targets using graph theory. Then, the group estimation involves two stages of the target state estimation and group state (group size, shape, etc) estimation. In the first stage, based on the given group dynamic models, we derive the target estimated state set and the number of targets by using the multi-Bernoulli filter under the assumption of independence of all targets. In the second stage, we combine the graph theory with the group targets and build the adjacency matrix of the estimated state set. We thus get the number of the subgroups, the group state, the group sizes and its structures. Finally, a linear and a non-linear examples are given to verify the proposed algorithm, respectively.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple resolvable group target estimation using graph theory and the multi-Bernoulli filter\",\"authors\":\"Weifeng Liu, Shujun Zhu, Chenglin Wen\",\"doi\":\"10.1109/ICCAIS.2016.7822429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers multiple resolvable group target estimation under clutter environment. We first build the structure for the resolvable group targets using graph theory. Then, the group estimation involves two stages of the target state estimation and group state (group size, shape, etc) estimation. In the first stage, based on the given group dynamic models, we derive the target estimated state set and the number of targets by using the multi-Bernoulli filter under the assumption of independence of all targets. In the second stage, we combine the graph theory with the group targets and build the adjacency matrix of the estimated state set. We thus get the number of the subgroups, the group state, the group sizes and its structures. Finally, a linear and a non-linear examples are given to verify the proposed algorithm, respectively.\",\"PeriodicalId\":407031,\"journal\":{\"name\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2016.7822429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了杂波环境下的多可分辨群目标估计问题。首先利用图论构造了可解群目标的结构。然后,群体估计包括目标状态估计和群体状态(群体大小、形状等)估计两个阶段。第一阶段,在给定群体动态模型的基础上,在所有目标独立的假设下,利用多重伯努利滤波器导出目标估计状态集和目标数量;在第二阶段,我们将图论与群体目标相结合,建立估计状态集的邻接矩阵。这样我们就得到了子群的数量、群的状态、群的大小和结构。最后,分别给出了一个线性和非线性的算例来验证所提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple resolvable group target estimation using graph theory and the multi-Bernoulli filter
This paper considers multiple resolvable group target estimation under clutter environment. We first build the structure for the resolvable group targets using graph theory. Then, the group estimation involves two stages of the target state estimation and group state (group size, shape, etc) estimation. In the first stage, based on the given group dynamic models, we derive the target estimated state set and the number of targets by using the multi-Bernoulli filter under the assumption of independence of all targets. In the second stage, we combine the graph theory with the group targets and build the adjacency matrix of the estimated state set. We thus get the number of the subgroups, the group state, the group sizes and its structures. Finally, a linear and a non-linear examples are given to verify the proposed algorithm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信