智能新颖的基于计算机的图像伪造认证分析工具

R. Teymourzadeh, Amirrize Alpha, V. H. Mok
{"title":"智能新颖的基于计算机的图像伪造认证分析工具","authors":"R. Teymourzadeh, Amirrize Alpha, V. H. Mok","doi":"10.1109/ICCircuitsAndSystems.2012.6408276","DOIUrl":null,"url":null,"abstract":"This paper presents an integration of image forgery detection with image facial recognition using black propagation neural network (BPNN). We observed that facial image recognition by itself will always give a matching output or closest possible output image for every input image irrespective of the authenticity or otherwise not of the testing input image. Based on this, we are proposing the combination of the blind but powerful automation image forgery detection for entire input images for the BPNN recognition program. Hence, an input image must first be authenticated before being fed into the recognition program. Thus, as image security identification and authentication requirement, any image that fails the authentication/verification stage is not to be used as an input/test image. In addition, the universal smart GUI tool is proposed and designed to perform image forgery detection with the high accuracy of ±2% error rate. Meanwhile, a novel structure that provides efficient automatic image forgery detection for all input test images for the BPNN recognition is presented.","PeriodicalId":325846,"journal":{"name":"2012 IEEE International Conference on Circuits and Systems (ICCAS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Smart novel computer-based analytical tool for image forgery authentication\",\"authors\":\"R. Teymourzadeh, Amirrize Alpha, V. H. Mok\",\"doi\":\"10.1109/ICCircuitsAndSystems.2012.6408276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an integration of image forgery detection with image facial recognition using black propagation neural network (BPNN). We observed that facial image recognition by itself will always give a matching output or closest possible output image for every input image irrespective of the authenticity or otherwise not of the testing input image. Based on this, we are proposing the combination of the blind but powerful automation image forgery detection for entire input images for the BPNN recognition program. Hence, an input image must first be authenticated before being fed into the recognition program. Thus, as image security identification and authentication requirement, any image that fails the authentication/verification stage is not to be used as an input/test image. In addition, the universal smart GUI tool is proposed and designed to perform image forgery detection with the high accuracy of ±2% error rate. Meanwhile, a novel structure that provides efficient automatic image forgery detection for all input test images for the BPNN recognition is presented.\",\"PeriodicalId\":325846,\"journal\":{\"name\":\"2012 IEEE International Conference on Circuits and Systems (ICCAS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Circuits and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCircuitsAndSystems.2012.6408276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Circuits and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCircuitsAndSystems.2012.6408276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于黑传播神经网络(BPNN)的图像伪造检测与图像人脸识别相结合的方法。我们观察到,无论测试输入图像的真实性与否,面部图像识别本身总是会为每个输入图像提供匹配输出或最接近的可能输出图像。在此基础上,我们提出了对整个输入图像进行盲而强大的自动图像伪造检测的组合,用于bp神经网络识别方案。因此,输入的图像在输入到识别程序之前必须首先进行身份验证。因此,作为图像安全识别和认证的要求,任何未通过认证/验证阶段的图像都不能用作输入/测试图像。此外,提出并设计了通用的智能GUI工具,用于图像伪造检测,准确率达到±2%的错误率。同时,提出了一种新的结构,可以对所有输入的测试图像进行有效的自动图像伪造检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart novel computer-based analytical tool for image forgery authentication
This paper presents an integration of image forgery detection with image facial recognition using black propagation neural network (BPNN). We observed that facial image recognition by itself will always give a matching output or closest possible output image for every input image irrespective of the authenticity or otherwise not of the testing input image. Based on this, we are proposing the combination of the blind but powerful automation image forgery detection for entire input images for the BPNN recognition program. Hence, an input image must first be authenticated before being fed into the recognition program. Thus, as image security identification and authentication requirement, any image that fails the authentication/verification stage is not to be used as an input/test image. In addition, the universal smart GUI tool is proposed and designed to perform image forgery detection with the high accuracy of ±2% error rate. Meanwhile, a novel structure that provides efficient automatic image forgery detection for all input test images for the BPNN recognition is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信