{"title":"组合验证方法的紧密集成","authors":"J. Burch, V. Singhal","doi":"10.1145/288548.289088","DOIUrl":null,"url":null,"abstract":"Combinational verification is an important piece of most equivalence checking tools. In the recent past, many combinational verification algorithms have appeared in the literature. Previous results show that these algorithms are able to exploit circuit similarity to successfully verify large designs. However, none of these strategies seems to work when the two input designs are not equivalent. We present our combinational verification algorithm, with evidence, that is designed to be robust for both the positive and the negative problem instances. We also show that a tight integration of different verification techniques, as opposed to a coarse integration of different algorithm, is more effective at solving hard instances.","PeriodicalId":224802,"journal":{"name":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Tight integration of combinational verification methods\",\"authors\":\"J. Burch, V. Singhal\",\"doi\":\"10.1145/288548.289088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combinational verification is an important piece of most equivalence checking tools. In the recent past, many combinational verification algorithms have appeared in the literature. Previous results show that these algorithms are able to exploit circuit similarity to successfully verify large designs. However, none of these strategies seems to work when the two input designs are not equivalent. We present our combinational verification algorithm, with evidence, that is designed to be robust for both the positive and the negative problem instances. We also show that a tight integration of different verification techniques, as opposed to a coarse integration of different algorithm, is more effective at solving hard instances.\",\"PeriodicalId\":224802,\"journal\":{\"name\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/288548.289088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.289088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tight integration of combinational verification methods
Combinational verification is an important piece of most equivalence checking tools. In the recent past, many combinational verification algorithms have appeared in the literature. Previous results show that these algorithms are able to exploit circuit similarity to successfully verify large designs. However, none of these strategies seems to work when the two input designs are not equivalent. We present our combinational verification algorithm, with evidence, that is designed to be robust for both the positive and the negative problem instances. We also show that a tight integration of different verification techniques, as opposed to a coarse integration of different algorithm, is more effective at solving hard instances.