构建皮质尺度CMOL/CMOS电路的前景:设计空间探索

D. Hammerstrom, M. Zaveri
{"title":"构建皮质尺度CMOL/CMOS电路的前景:设计空间探索","authors":"D. Hammerstrom, M. Zaveri","doi":"10.1109/NORCHP.2009.5397858","DOIUrl":null,"url":null,"abstract":"In this paper, we briefly present a hardware design space exploration methodology to investigate various architectures/designs, and their relative performance/price trade-offs. Using this methodology, we investigate CMOS and hybrid nano-scale (CMOL) based digital and mixed-signal circuits that implement Bayesian Memory (a simplified computational model based on George and Hawkins' model of the visual cortex, and Pearl's belief propagation), and for a cortex-scale spiking neural model. We then present the results of the hardware design space exploration, for implementing large-scale neuro/cortex inspired systems, and provide ballpark performance/price and scaling estimates for the same. These results provide some insight into the prospects for building large-scale Bayesian Inference engines, and neuromorphic networks using emerging nanoelectronics and/or nanogrid circuit structures. In general, the study of such hypothetical architectures will help guide research trends in intelligent computing (including neuro/cognitive systems), and the use of radical new device and circuit technology in these systems.","PeriodicalId":308859,"journal":{"name":"2009 NORCHIP","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prospects for building cortex-scale CMOL/CMOS circuits: A design space exploration\",\"authors\":\"D. Hammerstrom, M. Zaveri\",\"doi\":\"10.1109/NORCHP.2009.5397858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we briefly present a hardware design space exploration methodology to investigate various architectures/designs, and their relative performance/price trade-offs. Using this methodology, we investigate CMOS and hybrid nano-scale (CMOL) based digital and mixed-signal circuits that implement Bayesian Memory (a simplified computational model based on George and Hawkins' model of the visual cortex, and Pearl's belief propagation), and for a cortex-scale spiking neural model. We then present the results of the hardware design space exploration, for implementing large-scale neuro/cortex inspired systems, and provide ballpark performance/price and scaling estimates for the same. These results provide some insight into the prospects for building large-scale Bayesian Inference engines, and neuromorphic networks using emerging nanoelectronics and/or nanogrid circuit structures. In general, the study of such hypothetical architectures will help guide research trends in intelligent computing (including neuro/cognitive systems), and the use of radical new device and circuit technology in these systems.\",\"PeriodicalId\":308859,\"journal\":{\"name\":\"2009 NORCHIP\",\"volume\":\"2009 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 NORCHIP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NORCHP.2009.5397858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NORCHIP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2009.5397858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们简要介绍了一种硬件设计空间探索方法,用于研究各种架构/设计,以及它们的相对性能/价格权衡。利用这种方法,我们研究了基于CMOS和混合纳米级(CMOL)的数字和混合信号电路,这些电路实现了贝叶斯记忆(一种基于George和Hawkins的视觉皮层模型和Pearl的信念传播模型的简化计算模型),并用于皮质尺度的峰值神经模型。然后,我们展示了硬件设计空间探索的结果,用于实现大规模的神经/皮层启发系统,并提供了大致的性能/价格和扩展估计。这些结果为使用新兴的纳米电子学和/或纳米网格电路结构构建大规模贝叶斯推理引擎和神经形态网络的前景提供了一些见解。总的来说,对这种假设架构的研究将有助于指导智能计算(包括神经/认知系统)的研究趋势,以及在这些系统中使用全新的设备和电路技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prospects for building cortex-scale CMOL/CMOS circuits: A design space exploration
In this paper, we briefly present a hardware design space exploration methodology to investigate various architectures/designs, and their relative performance/price trade-offs. Using this methodology, we investigate CMOS and hybrid nano-scale (CMOL) based digital and mixed-signal circuits that implement Bayesian Memory (a simplified computational model based on George and Hawkins' model of the visual cortex, and Pearl's belief propagation), and for a cortex-scale spiking neural model. We then present the results of the hardware design space exploration, for implementing large-scale neuro/cortex inspired systems, and provide ballpark performance/price and scaling estimates for the same. These results provide some insight into the prospects for building large-scale Bayesian Inference engines, and neuromorphic networks using emerging nanoelectronics and/or nanogrid circuit structures. In general, the study of such hypothetical architectures will help guide research trends in intelligent computing (including neuro/cognitive systems), and the use of radical new device and circuit technology in these systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信