{"title":"使用全光不透明函数进行大体积可视化的可见性剔除","authors":"Jinzhu Gao, Jian Huang, Han-Wei Shen, J. Kohl","doi":"10.1109/VISUAL.2003.1250391","DOIUrl":null,"url":null,"abstract":"Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Visibility culling using plenoptic opacity functions for large volume visualization\",\"authors\":\"Jinzhu Gao, Jian Huang, Han-Wei Shen, J. Kohl\",\"doi\":\"10.1109/VISUAL.2003.1250391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visibility culling using plenoptic opacity functions for large volume visualization
Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.