使用全光不透明函数进行大体积可视化的可见性剔除

Jinzhu Gao, Jian Huang, Han-Wei Shen, J. Kohl
{"title":"使用全光不透明函数进行大体积可视化的可见性剔除","authors":"Jinzhu Gao, Jian Huang, Han-Wei Shen, J. Kohl","doi":"10.1109/VISUAL.2003.1250391","DOIUrl":null,"url":null,"abstract":"Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Visibility culling using plenoptic opacity functions for large volume visualization\",\"authors\":\"Jinzhu Gao, Jian Huang, Han-Wei Shen, J. Kohl\",\"doi\":\"10.1109/VISUAL.2003.1250391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

可见性剔除有可能以重要的方式加速大型数据可视化。不幸的是,现有的算法在并行化时不能很好地扩展,并且每当修改不透明度传递函数时都需要完全重新计算。为了解决这些问题,我们设计了一个全光学不透明度函数(POF)方案来编码卷块的视图依赖的不透明度。在预处理阶段脱机计算pof,每个块只计算一次。我们表明,使用pof是(i)一种高效,保守和有效的方式来编码一个卷块的不透明度变化的范围内的视图,(ii)灵活的不透明度传递函数家族的重用,而不需要额外的离线处理,(iii)高度可扩展,用于大规模并行实现。我们的研究结果证实了pof在大规模并行体绘制中可见度剔除的有效性;我们可以在32个处理器上使用软件光线投射交互渲染可视女人数据集,并实时交互修改不透明度传递函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visibility culling using plenoptic opacity functions for large volume visualization
Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信