尺度同调和拓扑熵

B. Hou, Kiyoshi Igusa, Zihao Liu
{"title":"尺度同调和拓扑熵","authors":"B. Hou, Kiyoshi Igusa, Zihao Liu","doi":"10.1090/bproc/182","DOIUrl":null,"url":null,"abstract":"In this paper, we build up a scaled homology theory, \n\n \n \n l\n c\n \n lc\n \n\n-homology, for metric spaces such that every metric space can be visually regarded as “locally contractible” with this newly-built homology. We check that \n\n \n \n l\n c\n \n lc\n \n\n-homology satisfies all Eilenberg-Steenrod axioms except the exactness axiom whereas its corresponding \n\n \n \n l\n c\n \n lc\n \n\n-cohomology satisfies exactness axiom for cohomology. This homology can relax the smooth manifold restrictions on the compact metric space such that the entropy conjecture will hold for the first \n\n \n \n l\n c\n \n lc\n \n\n-homology group.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaled homology and topological entropy\",\"authors\":\"B. Hou, Kiyoshi Igusa, Zihao Liu\",\"doi\":\"10.1090/bproc/182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we build up a scaled homology theory, \\n\\n \\n \\n l\\n c\\n \\n lc\\n \\n\\n-homology, for metric spaces such that every metric space can be visually regarded as “locally contractible” with this newly-built homology. We check that \\n\\n \\n \\n l\\n c\\n \\n lc\\n \\n\\n-homology satisfies all Eilenberg-Steenrod axioms except the exactness axiom whereas its corresponding \\n\\n \\n \\n l\\n c\\n \\n lc\\n \\n\\n-cohomology satisfies exactness axiom for cohomology. This homology can relax the smooth manifold restrictions on the compact metric space such that the entropy conjecture will hold for the first \\n\\n \\n \\n l\\n c\\n \\n lc\\n \\n\\n-homology group.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了度量空间的尺度同调理论——lc -同调,使得每个度量空间在视觉上都可以用这个新建立的同调看作是“局部可缩”的。我们证明了lc -同调满足除精确公理以外的所有Eilenberg-Steenrod公理,而它对应的lc -上同调满足上同调的精确公理。这种同调可以放宽紧度量空间上的光滑流形限制,使得熵猜想对第一个lc -同调群成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaled homology and topological entropy
In this paper, we build up a scaled homology theory, l c lc -homology, for metric spaces such that every metric space can be visually regarded as “locally contractible” with this newly-built homology. We check that l c lc -homology satisfies all Eilenberg-Steenrod axioms except the exactness axiom whereas its corresponding l c lc -cohomology satisfies exactness axiom for cohomology. This homology can relax the smooth manifold restrictions on the compact metric space such that the entropy conjecture will hold for the first l c lc -homology group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信