胚胎学+免疫电子学:一种生物启发的容错方法

D. Bradley, C. Ortega-Sanchez, A. Tyrrell
{"title":"胚胎学+免疫电子学:一种生物启发的容错方法","authors":"D. Bradley, C. Ortega-Sanchez, A. Tyrrell","doi":"10.1109/EH.2000.869359","DOIUrl":null,"url":null,"abstract":"Fault tolerance has always been a standard feature of electronic systems intended for long-term missions. However, the high complexity of modern systems makes the incorporation of fault tolerance a difficult task. Novel approaches to fault tolerance can be achieved by drawing inspiration from nature. Biological organisms possess characteristics such as healing and learning that can be applied to the design of fault-tolerant systems. This paper extends the work on bio-inspired fault-tolerant systems at the University of York. It is proposed that by combining embryonic arrays with an immune inspired network, it is possible to achieve systems with higher reliability.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Embryonics+immunotronics: a bio-inspired approach to fault tolerance\",\"authors\":\"D. Bradley, C. Ortega-Sanchez, A. Tyrrell\",\"doi\":\"10.1109/EH.2000.869359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault tolerance has always been a standard feature of electronic systems intended for long-term missions. However, the high complexity of modern systems makes the incorporation of fault tolerance a difficult task. Novel approaches to fault tolerance can be achieved by drawing inspiration from nature. Biological organisms possess characteristics such as healing and learning that can be applied to the design of fault-tolerant systems. This paper extends the work on bio-inspired fault-tolerant systems at the University of York. It is proposed that by combining embryonic arrays with an immune inspired network, it is possible to achieve systems with higher reliability.\",\"PeriodicalId\":432338,\"journal\":{\"name\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2000.869359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

容错一直是用于长期任务的电子系统的标准特征。然而,现代系统的高复杂性使得容错成为一项困难的任务。新的容错方法可以通过从自然界中汲取灵感来实现。生物有机体具有愈合和学习等特性,可应用于容错系统的设计。本文扩展了约克大学的仿生容错系统的工作。提出将胚胎阵列与免疫激发网络相结合,可以实现更高可靠性的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embryonics+immunotronics: a bio-inspired approach to fault tolerance
Fault tolerance has always been a standard feature of electronic systems intended for long-term missions. However, the high complexity of modern systems makes the incorporation of fault tolerance a difficult task. Novel approaches to fault tolerance can be achieved by drawing inspiration from nature. Biological organisms possess characteristics such as healing and learning that can be applied to the design of fault-tolerant systems. This paper extends the work on bio-inspired fault-tolerant systems at the University of York. It is proposed that by combining embryonic arrays with an immune inspired network, it is possible to achieve systems with higher reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信