Chinnamuthu Paulsamy, P. Pooja, Heigrujam Manas Singh
{"title":"掠角沉积法合成纳米线及其应用","authors":"Chinnamuthu Paulsamy, P. Pooja, Heigrujam Manas Singh","doi":"10.5772/intechopen.94012","DOIUrl":null,"url":null,"abstract":"Nanowires are highly attractive for advanced nanoelectronics and nanoscience applications, due to its novel properties such as increased surface area, large aspect ratio, and increased surface scattering of electrons and phonons. The design and fabrication of nanowires array provide a great platform to overcome the challenges/limitation of its counter partner. This chapter focuses on the synthesis of metal oxide nanowire and axial heterostructure nanowire array using the Glancing angle deposition (GLAD) technique. The structural, optical and electrical properties are studied. This GLAD technique offers control over one-dimensional (1D) nanostructure growth with self-alignment capability. It is also reviewed in an effort to cover the various application in this area of optoelectronic devices and wettability applications that had been synthesized using GLAD.","PeriodicalId":377742,"journal":{"name":"Nanowires - Recent Progress","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Nanowire Using Glancing Angle Deposition and Their Applications\",\"authors\":\"Chinnamuthu Paulsamy, P. Pooja, Heigrujam Manas Singh\",\"doi\":\"10.5772/intechopen.94012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanowires are highly attractive for advanced nanoelectronics and nanoscience applications, due to its novel properties such as increased surface area, large aspect ratio, and increased surface scattering of electrons and phonons. The design and fabrication of nanowires array provide a great platform to overcome the challenges/limitation of its counter partner. This chapter focuses on the synthesis of metal oxide nanowire and axial heterostructure nanowire array using the Glancing angle deposition (GLAD) technique. The structural, optical and electrical properties are studied. This GLAD technique offers control over one-dimensional (1D) nanostructure growth with self-alignment capability. It is also reviewed in an effort to cover the various application in this area of optoelectronic devices and wettability applications that had been synthesized using GLAD.\",\"PeriodicalId\":377742,\"journal\":{\"name\":\"Nanowires - Recent Progress\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanowires - Recent Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.94012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanowires - Recent Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Nanowire Using Glancing Angle Deposition and Their Applications
Nanowires are highly attractive for advanced nanoelectronics and nanoscience applications, due to its novel properties such as increased surface area, large aspect ratio, and increased surface scattering of electrons and phonons. The design and fabrication of nanowires array provide a great platform to overcome the challenges/limitation of its counter partner. This chapter focuses on the synthesis of metal oxide nanowire and axial heterostructure nanowire array using the Glancing angle deposition (GLAD) technique. The structural, optical and electrical properties are studied. This GLAD technique offers control over one-dimensional (1D) nanostructure growth with self-alignment capability. It is also reviewed in an effort to cover the various application in this area of optoelectronic devices and wettability applications that had been synthesized using GLAD.