掠角沉积法合成纳米线及其应用

Chinnamuthu Paulsamy, P. Pooja, Heigrujam Manas Singh
{"title":"掠角沉积法合成纳米线及其应用","authors":"Chinnamuthu Paulsamy, P. Pooja, Heigrujam Manas Singh","doi":"10.5772/intechopen.94012","DOIUrl":null,"url":null,"abstract":"Nanowires are highly attractive for advanced nanoelectronics and nanoscience applications, due to its novel properties such as increased surface area, large aspect ratio, and increased surface scattering of electrons and phonons. The design and fabrication of nanowires array provide a great platform to overcome the challenges/limitation of its counter partner. This chapter focuses on the synthesis of metal oxide nanowire and axial heterostructure nanowire array using the Glancing angle deposition (GLAD) technique. The structural, optical and electrical properties are studied. This GLAD technique offers control over one-dimensional (1D) nanostructure growth with self-alignment capability. It is also reviewed in an effort to cover the various application in this area of optoelectronic devices and wettability applications that had been synthesized using GLAD.","PeriodicalId":377742,"journal":{"name":"Nanowires - Recent Progress","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Nanowire Using Glancing Angle Deposition and Their Applications\",\"authors\":\"Chinnamuthu Paulsamy, P. Pooja, Heigrujam Manas Singh\",\"doi\":\"10.5772/intechopen.94012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanowires are highly attractive for advanced nanoelectronics and nanoscience applications, due to its novel properties such as increased surface area, large aspect ratio, and increased surface scattering of electrons and phonons. The design and fabrication of nanowires array provide a great platform to overcome the challenges/limitation of its counter partner. This chapter focuses on the synthesis of metal oxide nanowire and axial heterostructure nanowire array using the Glancing angle deposition (GLAD) technique. The structural, optical and electrical properties are studied. This GLAD technique offers control over one-dimensional (1D) nanostructure growth with self-alignment capability. It is also reviewed in an effort to cover the various application in this area of optoelectronic devices and wettability applications that had been synthesized using GLAD.\",\"PeriodicalId\":377742,\"journal\":{\"name\":\"Nanowires - Recent Progress\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanowires - Recent Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.94012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanowires - Recent Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米线由于其增加的表面积、大的宽高比以及增加的电子和声子的表面散射等新特性,在先进的纳米电子学和纳米科学应用中具有很高的吸引力。纳米线阵列的设计和制造为克服其对手的挑战/限制提供了一个很好的平台。本章重点介绍了利用掠角沉积技术合成金属氧化物纳米线和轴向异质结构纳米线阵列。研究了其结构、光学和电学性能。这种GLAD技术提供了对一维(1D)纳米结构生长的控制,具有自对准能力。本文还综述了利用GLAD合成的光电子器件在该领域的各种应用和润湿性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Nanowire Using Glancing Angle Deposition and Their Applications
Nanowires are highly attractive for advanced nanoelectronics and nanoscience applications, due to its novel properties such as increased surface area, large aspect ratio, and increased surface scattering of electrons and phonons. The design and fabrication of nanowires array provide a great platform to overcome the challenges/limitation of its counter partner. This chapter focuses on the synthesis of metal oxide nanowire and axial heterostructure nanowire array using the Glancing angle deposition (GLAD) technique. The structural, optical and electrical properties are studied. This GLAD technique offers control over one-dimensional (1D) nanostructure growth with self-alignment capability. It is also reviewed in an effort to cover the various application in this area of optoelectronic devices and wettability applications that had been synthesized using GLAD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信