D. Rockwood, Martin F. Ellis, Ru-liang Liu, Fengliang Zhao, Kyle W. Fabbro, Zhenli He, David R. Derbowka
{"title":"用于生物炭和固碳的林木:生产和效益","authors":"D. Rockwood, Martin F. Ellis, Ru-liang Liu, Fengliang Zhao, Kyle W. Fabbro, Zhenli He, David R. Derbowka","doi":"10.5772/INTECHOPEN.92377","DOIUrl":null,"url":null,"abstract":"Many tree species worldwide are suitable for making biochar (BC), with planted eucalypts in particular being very productive and extensive. Above- and below-ground carbon sequestration by Eucalyptus plantations depends on plantation management options. An intensively managed cultivar could sequester over 100 mt of C/ha at a cost of $21 – 40/mt. BC production systems ranging in size from small mobile units to large centralized facilities and many kiln technologies influence the quality and price of the BC produced as well as the ability to control emissions. While BC from wood has many applications, its use as a soil amendment in forest plantations is appealing as a long-term sequestration strategy and opportunity to grow more robust trees and increase survival rates. Research in Florida USA and elsewhere addresses responses of forest and agronomic crops to wood BC soil amendments with and without other fertilizers. In combination with the carbon sequestered through tree growth, sequestration of 2.5 mt/ha of wood BC as a soil amendment in Eucalyptus plantations has estimated costs ranging from $3.30 – 5.49/ton of C.","PeriodicalId":423830,"journal":{"name":"Applications of Biochar for Environmental Safety","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Forest Trees for Biochar and Carbon Sequestration: Production and Benefits\",\"authors\":\"D. Rockwood, Martin F. Ellis, Ru-liang Liu, Fengliang Zhao, Kyle W. Fabbro, Zhenli He, David R. Derbowka\",\"doi\":\"10.5772/INTECHOPEN.92377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many tree species worldwide are suitable for making biochar (BC), with planted eucalypts in particular being very productive and extensive. Above- and below-ground carbon sequestration by Eucalyptus plantations depends on plantation management options. An intensively managed cultivar could sequester over 100 mt of C/ha at a cost of $21 – 40/mt. BC production systems ranging in size from small mobile units to large centralized facilities and many kiln technologies influence the quality and price of the BC produced as well as the ability to control emissions. While BC from wood has many applications, its use as a soil amendment in forest plantations is appealing as a long-term sequestration strategy and opportunity to grow more robust trees and increase survival rates. Research in Florida USA and elsewhere addresses responses of forest and agronomic crops to wood BC soil amendments with and without other fertilizers. In combination with the carbon sequestered through tree growth, sequestration of 2.5 mt/ha of wood BC as a soil amendment in Eucalyptus plantations has estimated costs ranging from $3.30 – 5.49/ton of C.\",\"PeriodicalId\":423830,\"journal\":{\"name\":\"Applications of Biochar for Environmental Safety\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Biochar for Environmental Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.92377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Biochar for Environmental Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.92377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forest Trees for Biochar and Carbon Sequestration: Production and Benefits
Many tree species worldwide are suitable for making biochar (BC), with planted eucalypts in particular being very productive and extensive. Above- and below-ground carbon sequestration by Eucalyptus plantations depends on plantation management options. An intensively managed cultivar could sequester over 100 mt of C/ha at a cost of $21 – 40/mt. BC production systems ranging in size from small mobile units to large centralized facilities and many kiln technologies influence the quality and price of the BC produced as well as the ability to control emissions. While BC from wood has many applications, its use as a soil amendment in forest plantations is appealing as a long-term sequestration strategy and opportunity to grow more robust trees and increase survival rates. Research in Florida USA and elsewhere addresses responses of forest and agronomic crops to wood BC soil amendments with and without other fertilizers. In combination with the carbon sequestered through tree growth, sequestration of 2.5 mt/ha of wood BC as a soil amendment in Eucalyptus plantations has estimated costs ranging from $3.30 – 5.49/ton of C.