{"title":"平板太阳能集热器的时空离散化模型简化","authors":"Mahmoud Nabag, M. A. Al-Radhawi, M. Bettayeb","doi":"10.1109/ENERGYCON.2010.5771725","DOIUrl":null,"url":null,"abstract":"Three model reduction schemes, namely, balanced truncation, singular perturbation balanced truncation, and Han-kel norm approximation are used to develop a reduced-order model to the partial differential system representing the dynamic behavior of the flat-plate solar collector system. To get a tractable finite-dimensional model instead of the infinite-dimensional model, the finite difference method is applied to the PDEs where a discretization of both time and space will result in a high-order linear time-invariant discrete state-space model. Then, a reduced-order model is computed via the three aforementioned schemes from the resultant high-order model. A substantial order reduction is shown to be possible and the obtained discrete reduced-order models are tractable for the purposes of simulation and control via digital controllers.","PeriodicalId":386008,"journal":{"name":"2010 IEEE International Energy Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Model reduction of flat-plate solar collector using time-space discretization\",\"authors\":\"Mahmoud Nabag, M. A. Al-Radhawi, M. Bettayeb\",\"doi\":\"10.1109/ENERGYCON.2010.5771725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three model reduction schemes, namely, balanced truncation, singular perturbation balanced truncation, and Han-kel norm approximation are used to develop a reduced-order model to the partial differential system representing the dynamic behavior of the flat-plate solar collector system. To get a tractable finite-dimensional model instead of the infinite-dimensional model, the finite difference method is applied to the PDEs where a discretization of both time and space will result in a high-order linear time-invariant discrete state-space model. Then, a reduced-order model is computed via the three aforementioned schemes from the resultant high-order model. A substantial order reduction is shown to be possible and the obtained discrete reduced-order models are tractable for the purposes of simulation and control via digital controllers.\",\"PeriodicalId\":386008,\"journal\":{\"name\":\"2010 IEEE International Energy Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCON.2010.5771725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2010.5771725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model reduction of flat-plate solar collector using time-space discretization
Three model reduction schemes, namely, balanced truncation, singular perturbation balanced truncation, and Han-kel norm approximation are used to develop a reduced-order model to the partial differential system representing the dynamic behavior of the flat-plate solar collector system. To get a tractable finite-dimensional model instead of the infinite-dimensional model, the finite difference method is applied to the PDEs where a discretization of both time and space will result in a high-order linear time-invariant discrete state-space model. Then, a reduced-order model is computed via the three aforementioned schemes from the resultant high-order model. A substantial order reduction is shown to be possible and the obtained discrete reduced-order models are tractable for the purposes of simulation and control via digital controllers.