B. Granados-Rojas, M. Reyes-Barranca, G. Abarca-Jimenez, L. M. Flores-Nava, J. Moreno-Cadenas
{"title":"MEMS惯性传感的三层电容结构设计","authors":"B. Granados-Rojas, M. Reyes-Barranca, G. Abarca-Jimenez, L. M. Flores-Nava, J. Moreno-Cadenas","doi":"10.1109/ICEEE.2016.7751236","DOIUrl":null,"url":null,"abstract":"In this paper a two-terminal capacitive structure is presented in which a novel architecture with a double interleaved (interdigitated) scheme is introduced. This structure was originally conceived as a mechanism to achieve a greater capacitance between the plates (terminals) of an integrated capacitor using a relatively smaller design area in the standard 0.5μm, two polysilicon and three metal layers (2P3M) CMOS technology. This work presents the design and theoretical analysis of a three-metal interleaved structure used as a varactor tied down to the proof mass of an integrated CMOS-MEMS accelerometer where the active devices are floating-gate transistors (FGMOS) with a variable capacitive coupling coefficient. Nevertheless, the three-layered geometrical scheme may have a wide range of applications across the MEMS technology.","PeriodicalId":285464,"journal":{"name":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"3-layered capacitive structure design for MEMS inertial sensing\",\"authors\":\"B. Granados-Rojas, M. Reyes-Barranca, G. Abarca-Jimenez, L. M. Flores-Nava, J. Moreno-Cadenas\",\"doi\":\"10.1109/ICEEE.2016.7751236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a two-terminal capacitive structure is presented in which a novel architecture with a double interleaved (interdigitated) scheme is introduced. This structure was originally conceived as a mechanism to achieve a greater capacitance between the plates (terminals) of an integrated capacitor using a relatively smaller design area in the standard 0.5μm, two polysilicon and three metal layers (2P3M) CMOS technology. This work presents the design and theoretical analysis of a three-metal interleaved structure used as a varactor tied down to the proof mass of an integrated CMOS-MEMS accelerometer where the active devices are floating-gate transistors (FGMOS) with a variable capacitive coupling coefficient. Nevertheless, the three-layered geometrical scheme may have a wide range of applications across the MEMS technology.\",\"PeriodicalId\":285464,\"journal\":{\"name\":\"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2016.7751236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2016.7751236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3-layered capacitive structure design for MEMS inertial sensing
In this paper a two-terminal capacitive structure is presented in which a novel architecture with a double interleaved (interdigitated) scheme is introduced. This structure was originally conceived as a mechanism to achieve a greater capacitance between the plates (terminals) of an integrated capacitor using a relatively smaller design area in the standard 0.5μm, two polysilicon and three metal layers (2P3M) CMOS technology. This work presents the design and theoretical analysis of a three-metal interleaved structure used as a varactor tied down to the proof mass of an integrated CMOS-MEMS accelerometer where the active devices are floating-gate transistors (FGMOS) with a variable capacitive coupling coefficient. Nevertheless, the three-layered geometrical scheme may have a wide range of applications across the MEMS technology.