非常数参数马尔可夫模型的逼近

U. Desai, Saibal Banerjee, S. Kiaei
{"title":"非常数参数马尔可夫模型的逼近","authors":"U. Desai, Saibal Banerjee, S. Kiaei","doi":"10.1109/CDC.1984.272381","DOIUrl":null,"url":null,"abstract":"A generalization of the canonical correlation analysis approach has been developed for non-stationary process generated by Markovian models with non-constant parameters. This generalization, is then used to develop two model reduction (approximation) algorithms.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of Markovian models with non-constant parameters\",\"authors\":\"U. Desai, Saibal Banerjee, S. Kiaei\",\"doi\":\"10.1109/CDC.1984.272381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalization of the canonical correlation analysis approach has been developed for non-stationary process generated by Markovian models with non-constant parameters. This generalization, is then used to develop two model reduction (approximation) algorithms.\",\"PeriodicalId\":269680,\"journal\":{\"name\":\"The 23rd IEEE Conference on Decision and Control\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1984.272381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将典型相关分析方法推广到具有非恒定参数的马尔可夫模型所产生的非平稳过程。这种泛化,然后用于开发两种模型简化(近似)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of Markovian models with non-constant parameters
A generalization of the canonical correlation analysis approach has been developed for non-stationary process generated by Markovian models with non-constant parameters. This generalization, is then used to develop two model reduction (approximation) algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信