缺少输入变量的风力发电功率预测

M. Sunder, R. Abishek, Monalisa Maiti, Kishore Bingi, P. Devan, M. Assaad
{"title":"缺少输入变量的风力发电功率预测","authors":"M. Sunder, R. Abishek, Monalisa Maiti, Kishore Bingi, P. Devan, M. Assaad","doi":"10.1109/ICFTSC57269.2022.10039884","DOIUrl":null,"url":null,"abstract":"The power generated by electric wind turbines undergoes rapid changes due to continuous fluctuation of wind speed, direction, atmospheric pressure, etc. Providing the power industry with the capability to estimate these performance characteristics helps in the pre-planning of maintenance, which helps in power management by assessing the generated power for the day. However, forecasting the generated power with any missing input parameters is quite challenging. Therefore, this paper proposes a forecasting model with three types of neural networks to handle one missing input parameter to predict the wind turbine’s generated power. Firstly, a Feed Forward Neural Network (FFNN) is developed to forecast generated power from all four available input parameters. Later the FFNN, along with a Long Short-Term Memory (LSTM) and Nonlinear Autoregressive (NAR) neural networks, are modeled to handle the missing input parameter. The main FFNN then uses the predicted parameter to forecast the generated power. The results from the simulation study have indicated that the proposed strategy achieved the best performance in predicting the missing input and the system’s generated power.","PeriodicalId":386462,"journal":{"name":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting of Wind Turbines Generated Power With Missing Input Variables\",\"authors\":\"M. Sunder, R. Abishek, Monalisa Maiti, Kishore Bingi, P. Devan, M. Assaad\",\"doi\":\"10.1109/ICFTSC57269.2022.10039884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power generated by electric wind turbines undergoes rapid changes due to continuous fluctuation of wind speed, direction, atmospheric pressure, etc. Providing the power industry with the capability to estimate these performance characteristics helps in the pre-planning of maintenance, which helps in power management by assessing the generated power for the day. However, forecasting the generated power with any missing input parameters is quite challenging. Therefore, this paper proposes a forecasting model with three types of neural networks to handle one missing input parameter to predict the wind turbine’s generated power. Firstly, a Feed Forward Neural Network (FFNN) is developed to forecast generated power from all four available input parameters. Later the FFNN, along with a Long Short-Term Memory (LSTM) and Nonlinear Autoregressive (NAR) neural networks, are modeled to handle the missing input parameter. The main FFNN then uses the predicted parameter to forecast the generated power. The results from the simulation study have indicated that the proposed strategy achieved the best performance in predicting the missing input and the system’s generated power.\",\"PeriodicalId\":386462,\"journal\":{\"name\":\"2022 International Conference on Future Trends in Smart Communities (ICFTSC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Future Trends in Smart Communities (ICFTSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFTSC57269.2022.10039884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFTSC57269.2022.10039884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于风速、风向、大气压力等的持续波动,电风力发电机组产生的功率发生快速变化。为电力行业提供评估这些性能特征的能力有助于预先规划维护,从而通过评估当天的发电量来帮助进行电源管理。然而,预测任何缺失输入参数的发电功率是相当具有挑战性的。因此,本文提出了一种利用三种神经网络处理一个缺失输入参数的预测模型来预测风电机组的发电量。首先,建立了一个前馈神经网络(FFNN),根据所有四个可用的输入参数预测发电量。然后,FFNN与长短期记忆(LSTM)和非线性自回归(NAR)神经网络一起建模来处理缺失的输入参数。然后,主FFNN使用预测的参数来预测发电功率。仿真结果表明,所提策略在预测缺失输入和系统发电功率方面取得了最好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting of Wind Turbines Generated Power With Missing Input Variables
The power generated by electric wind turbines undergoes rapid changes due to continuous fluctuation of wind speed, direction, atmospheric pressure, etc. Providing the power industry with the capability to estimate these performance characteristics helps in the pre-planning of maintenance, which helps in power management by assessing the generated power for the day. However, forecasting the generated power with any missing input parameters is quite challenging. Therefore, this paper proposes a forecasting model with three types of neural networks to handle one missing input parameter to predict the wind turbine’s generated power. Firstly, a Feed Forward Neural Network (FFNN) is developed to forecast generated power from all four available input parameters. Later the FFNN, along with a Long Short-Term Memory (LSTM) and Nonlinear Autoregressive (NAR) neural networks, are modeled to handle the missing input parameter. The main FFNN then uses the predicted parameter to forecast the generated power. The results from the simulation study have indicated that the proposed strategy achieved the best performance in predicting the missing input and the system’s generated power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信