用于无人机行人检测的高质量面部表情图像生成

Yumin Tang, Jing Fan, J. Qu
{"title":"用于无人机行人检测的高质量面部表情图像生成","authors":"Yumin Tang, Jing Fan, J. Qu","doi":"10.3389/frspt.2022.1014183","DOIUrl":null,"url":null,"abstract":"For UAV pedestrian detection in the wild with perturbed parameters, such as lighting, distance, poor pixel and uneven distribution, traditional methods of image generation cannot accurately generate facial-expression images for UAV pedestrian detection. In this study, we propose an improved PR-SGAN (perceptual-remix-star generative adversarial network) method, which combines the improved interpolation method, perceptual loss function, and StarGAN to achieve high-quality facial-expression image generation. Experimental results show that the proposed method for discriminator-parameter update improves the generated facial-expression images in terms of image-generation evaluation indexes (5.80 dB in PSNR and 24% in SSIM); the generated images for generator-parameter update have high robustness against color. Compared to the traditional StarGAN method, the generated images are significantly improved in high frequency details and textures.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-quality facial-expression image generation for UAV pedestrian detection\",\"authors\":\"Yumin Tang, Jing Fan, J. Qu\",\"doi\":\"10.3389/frspt.2022.1014183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For UAV pedestrian detection in the wild with perturbed parameters, such as lighting, distance, poor pixel and uneven distribution, traditional methods of image generation cannot accurately generate facial-expression images for UAV pedestrian detection. In this study, we propose an improved PR-SGAN (perceptual-remix-star generative adversarial network) method, which combines the improved interpolation method, perceptual loss function, and StarGAN to achieve high-quality facial-expression image generation. Experimental results show that the proposed method for discriminator-parameter update improves the generated facial-expression images in terms of image-generation evaluation indexes (5.80 dB in PSNR and 24% in SSIM); the generated images for generator-parameter update have high robustness against color. Compared to the traditional StarGAN method, the generated images are significantly improved in high frequency details and textures.\",\"PeriodicalId\":137674,\"journal\":{\"name\":\"Frontiers in Space Technologies\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Space Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frspt.2022.1014183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Space Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frspt.2022.1014183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于光照、距离、像素差、分布不均匀等参数扰动的野外无人机行人检测,传统的图像生成方法无法准确生成用于无人机行人检测的面部表情图像。在本研究中,我们提出了一种改进的PR-SGAN (perception - remmix -star - generative adversarial network)方法,该方法将改进的插值方法、感知损失函数和StarGAN相结合,以实现高质量的面部表情图像生成。实验结果表明,所提出的判别器参数更新方法在图像生成评价指标方面提高了生成的面部表情图像(PSNR为5.80 dB, SSIM为24%);生成的图像对颜色具有较高的鲁棒性。与传统的StarGAN方法相比,生成的图像在高频细节和纹理方面都有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-quality facial-expression image generation for UAV pedestrian detection
For UAV pedestrian detection in the wild with perturbed parameters, such as lighting, distance, poor pixel and uneven distribution, traditional methods of image generation cannot accurately generate facial-expression images for UAV pedestrian detection. In this study, we propose an improved PR-SGAN (perceptual-remix-star generative adversarial network) method, which combines the improved interpolation method, perceptual loss function, and StarGAN to achieve high-quality facial-expression image generation. Experimental results show that the proposed method for discriminator-parameter update improves the generated facial-expression images in terms of image-generation evaluation indexes (5.80 dB in PSNR and 24% in SSIM); the generated images for generator-parameter update have high robustness against color. Compared to the traditional StarGAN method, the generated images are significantly improved in high frequency details and textures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信