{"title":"使用一阶和二阶导数技术的噪声和偏置体积数据的可视化","authors":"M. Persoon, I. Serlie, F. Post, R. Truyen, F. Vos","doi":"10.1109/VISUAL.2003.1250397","DOIUrl":null,"url":null,"abstract":"The quality of volume visualization depends strongly on the quality of the underlying data. In virtual colonoscopy, CT data should be acquired at a low radiation dose that results in a low signal-to-noise ratio. Alternatively, MRI data is acquired without ionizing radiation, but suffers from noise and bias (global signal fluctuations). Current volume visualization techniques often do not produce good results with noisy or biased data. This paper describes methods for volume visualization that deal with these imperfections. The techniques are based on specially adapted edge detectors using first and second order derivative filters. The filtering is integrated into the visualization process. The first order derivative method results in good quality images but suffers from localization bias. The second order method has better surface localization, especially in highly curved areas. It guarantees minimal detail smoothing resulting in a better visualization of polyps.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Visualization of noisy and biased volume data using first and second order derivative techniques\",\"authors\":\"M. Persoon, I. Serlie, F. Post, R. Truyen, F. Vos\",\"doi\":\"10.1109/VISUAL.2003.1250397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of volume visualization depends strongly on the quality of the underlying data. In virtual colonoscopy, CT data should be acquired at a low radiation dose that results in a low signal-to-noise ratio. Alternatively, MRI data is acquired without ionizing radiation, but suffers from noise and bias (global signal fluctuations). Current volume visualization techniques often do not produce good results with noisy or biased data. This paper describes methods for volume visualization that deal with these imperfections. The techniques are based on specially adapted edge detectors using first and second order derivative filters. The filtering is integrated into the visualization process. The first order derivative method results in good quality images but suffers from localization bias. The second order method has better surface localization, especially in highly curved areas. It guarantees minimal detail smoothing resulting in a better visualization of polyps.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualization of noisy and biased volume data using first and second order derivative techniques
The quality of volume visualization depends strongly on the quality of the underlying data. In virtual colonoscopy, CT data should be acquired at a low radiation dose that results in a low signal-to-noise ratio. Alternatively, MRI data is acquired without ionizing radiation, but suffers from noise and bias (global signal fluctuations). Current volume visualization techniques often do not produce good results with noisy or biased data. This paper describes methods for volume visualization that deal with these imperfections. The techniques are based on specially adapted edge detectors using first and second order derivative filters. The filtering is integrated into the visualization process. The first order derivative method results in good quality images but suffers from localization bias. The second order method has better surface localization, especially in highly curved areas. It guarantees minimal detail smoothing resulting in a better visualization of polyps.