基于等高线的随机波段测量变异性分解

I. WallowThomas, Jiyou Fu, Jiao Liang, Jen-Shiang Wang, Jimmy Fan, M. Delorme, Changan Wang, Fahong Li, V. Jain, Rui Yuan
{"title":"基于等高线的随机波段测量变异性分解","authors":"I. WallowThomas, Jiyou Fu, Jiao Liang, Jen-Shiang Wang, Jimmy Fan, M. Delorme, Changan Wang, Fahong Li, V. Jain, Rui Yuan","doi":"10.1117/12.2601587","DOIUrl":null,"url":null,"abstract":"Driving down imaging-induced edge placement error (EPE) is a key enabler of semiconductor technology node scaling1-3. From the 5 nm node forward, stochastic edge placement error (SEPE) is predicted to become the biggest contributor to total edge placement error. Many previous studies have established that LER, LCDU, and similar variability measurements require corrections for metrology artifacts and noise as well as mask variability transfer to more accurately represent wafer-level stochastic variability. In this presentation, we will discuss SEPE band behavior based on a methodology that allows local extraction of SEPE from total measured local variability (LEPU) in a generalized way along 2D contours.","PeriodicalId":169926,"journal":{"name":"International Conference on Extreme Ultraviolet Lithography 2021","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contour-based variability decomposition for stochastic band metrology\",\"authors\":\"I. WallowThomas, Jiyou Fu, Jiao Liang, Jen-Shiang Wang, Jimmy Fan, M. Delorme, Changan Wang, Fahong Li, V. Jain, Rui Yuan\",\"doi\":\"10.1117/12.2601587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driving down imaging-induced edge placement error (EPE) is a key enabler of semiconductor technology node scaling1-3. From the 5 nm node forward, stochastic edge placement error (SEPE) is predicted to become the biggest contributor to total edge placement error. Many previous studies have established that LER, LCDU, and similar variability measurements require corrections for metrology artifacts and noise as well as mask variability transfer to more accurately represent wafer-level stochastic variability. In this presentation, we will discuss SEPE band behavior based on a methodology that allows local extraction of SEPE from total measured local variability (LEPU) in a generalized way along 2D contours.\",\"PeriodicalId\":169926,\"journal\":{\"name\":\"International Conference on Extreme Ultraviolet Lithography 2021\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Extreme Ultraviolet Lithography 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2601587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Extreme Ultraviolet Lithography 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2601587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降低成像诱导的边缘放置误差(EPE)是实现半导体技术节点缩放的关键因素。从5nm节点开始,预测随机边缘放置误差(SEPE)将成为总边缘放置误差的最大贡献者。许多先前的研究已经确定,LER, LCDU和类似的变异性测量需要校正测量伪影和噪声以及掩膜变异性转移,以更准确地表示晶圆级随机变异性。在本次演讲中,我们将讨论基于一种方法的SEPE频带行为,该方法允许沿二维轮廓以广义方式从总测量局部变率(LEPU)中局部提取SEPE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contour-based variability decomposition for stochastic band metrology
Driving down imaging-induced edge placement error (EPE) is a key enabler of semiconductor technology node scaling1-3. From the 5 nm node forward, stochastic edge placement error (SEPE) is predicted to become the biggest contributor to total edge placement error. Many previous studies have established that LER, LCDU, and similar variability measurements require corrections for metrology artifacts and noise as well as mask variability transfer to more accurately represent wafer-level stochastic variability. In this presentation, we will discuss SEPE band behavior based on a methodology that allows local extraction of SEPE from total measured local variability (LEPU) in a generalized way along 2D contours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信