燃煤电站锅炉NOx排放与锅炉效率平衡模型及优化

Wang Xu, Chang Tai-hua
{"title":"燃煤电站锅炉NOx排放与锅炉效率平衡模型及优化","authors":"Wang Xu, Chang Tai-hua","doi":"10.1109/ANTHOLOGY.2013.6784853","DOIUrl":null,"url":null,"abstract":"In order to meet the requirement of high efficiency and low emission in boiler operations, a hybrid model is established based on experimental data and combined with BP neural network. This model uses the adjustable operation parameters of boiler as inputs and chooses NOx emission and boiler efficiency as outputs to achieve the prediction of NOx emission and thermal efficiency. And it optimizes the combustion process by using genetic algorithm. The results show that it is an applicable and effective numerical optimization method.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The balanced model and optimization of NOx emission and boiler efficiency at a coal-fired utility boiler\",\"authors\":\"Wang Xu, Chang Tai-hua\",\"doi\":\"10.1109/ANTHOLOGY.2013.6784853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the requirement of high efficiency and low emission in boiler operations, a hybrid model is established based on experimental data and combined with BP neural network. This model uses the adjustable operation parameters of boiler as inputs and chooses NOx emission and boiler efficiency as outputs to achieve the prediction of NOx emission and thermal efficiency. And it optimizes the combustion process by using genetic algorithm. The results show that it is an applicable and effective numerical optimization method.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6784853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了满足锅炉高效、低排放的运行要求,在实验数据的基础上,结合BP神经网络建立了混合模型。该模型以锅炉可调运行参数为输入,以NOx排放量和锅炉效率为输出,实现对NOx排放量和热效率的预测。利用遗传算法对燃烧过程进行优化。结果表明,该方法是一种实用、有效的数值优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The balanced model and optimization of NOx emission and boiler efficiency at a coal-fired utility boiler
In order to meet the requirement of high efficiency and low emission in boiler operations, a hybrid model is established based on experimental data and combined with BP neural network. This model uses the adjustable operation parameters of boiler as inputs and chooses NOx emission and boiler efficiency as outputs to achieve the prediction of NOx emission and thermal efficiency. And it optimizes the combustion process by using genetic algorithm. The results show that it is an applicable and effective numerical optimization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信