K. Azuma, A. Kishi, M. Tanigawa, S. Kaneko, T. Naka, A. Ishihawa, K. Iguchi, K. Sakiyama
{"title":"水化钛工艺在超薄SIMOX晶片上的应用","authors":"K. Azuma, A. Kishi, M. Tanigawa, S. Kaneko, T. Naka, A. Ishihawa, K. Iguchi, K. Sakiyama","doi":"10.1109/SOI.1995.526445","DOIUrl":null,"url":null,"abstract":"Fully-depleted, ultra-thin SIMOX/CMOS is a suitable technology to achieve low voltage and high speed application because of its capability of low Vth operation. However, large resistivity of diffusion area is an issue. In this paper,a thin salicidation layer was adopted to decrease the sheet resistivity of the ultra-thin SIMOX layer. Good transistor characteristics with sheet resistivity less than one tenth of the non-silicided diffusion resistivity were achieved, and no degradation of the transistor characteristics was observed.","PeriodicalId":149490,"journal":{"name":"1995 IEEE International SOI Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of Ti salicide process on ultra-thin SIMOX wafer\",\"authors\":\"K. Azuma, A. Kishi, M. Tanigawa, S. Kaneko, T. Naka, A. Ishihawa, K. Iguchi, K. Sakiyama\",\"doi\":\"10.1109/SOI.1995.526445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully-depleted, ultra-thin SIMOX/CMOS is a suitable technology to achieve low voltage and high speed application because of its capability of low Vth operation. However, large resistivity of diffusion area is an issue. In this paper,a thin salicidation layer was adopted to decrease the sheet resistivity of the ultra-thin SIMOX layer. Good transistor characteristics with sheet resistivity less than one tenth of the non-silicided diffusion resistivity were achieved, and no degradation of the transistor characteristics was observed.\",\"PeriodicalId\":149490,\"journal\":{\"name\":\"1995 IEEE International SOI Conference Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 IEEE International SOI Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOI.1995.526445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE International SOI Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1995.526445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Ti salicide process on ultra-thin SIMOX wafer
Fully-depleted, ultra-thin SIMOX/CMOS is a suitable technology to achieve low voltage and high speed application because of its capability of low Vth operation. However, large resistivity of diffusion area is an issue. In this paper,a thin salicidation layer was adopted to decrease the sheet resistivity of the ultra-thin SIMOX layer. Good transistor characteristics with sheet resistivity less than one tenth of the non-silicided diffusion resistivity were achieved, and no degradation of the transistor characteristics was observed.