{"title":"可配置的线性斯坦纳树结构的SoC和纳米技术","authors":"I. Jiang, Yen-Ting Yu","doi":"10.1109/ICCD.2008.4751837","DOIUrl":null,"url":null,"abstract":"The rectilinear Steiner minimal tree (RSMT) problem is essential in physical design. Moreover, the variant constraints for fabrication issues, including obstacle avoidance, multiple routing layers, layer-specific routing directions, cannot be ignored during RSMT construction for modern SoC and nano technologies. This paper proposes a construction-by-correction approach for obstacle-avoiding preferred direction rectilinear Steiner tree construction. Experimental results show that our algorithm is promising and outperforms the state-of-the-art works.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Configurable rectilinear Steiner tree construction for SoC and nano technologies\",\"authors\":\"I. Jiang, Yen-Ting Yu\",\"doi\":\"10.1109/ICCD.2008.4751837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rectilinear Steiner minimal tree (RSMT) problem is essential in physical design. Moreover, the variant constraints for fabrication issues, including obstacle avoidance, multiple routing layers, layer-specific routing directions, cannot be ignored during RSMT construction for modern SoC and nano technologies. This paper proposes a construction-by-correction approach for obstacle-avoiding preferred direction rectilinear Steiner tree construction. Experimental results show that our algorithm is promising and outperforms the state-of-the-art works.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Configurable rectilinear Steiner tree construction for SoC and nano technologies
The rectilinear Steiner minimal tree (RSMT) problem is essential in physical design. Moreover, the variant constraints for fabrication issues, including obstacle avoidance, multiple routing layers, layer-specific routing directions, cannot be ignored during RSMT construction for modern SoC and nano technologies. This paper proposes a construction-by-correction approach for obstacle-avoiding preferred direction rectilinear Steiner tree construction. Experimental results show that our algorithm is promising and outperforms the state-of-the-art works.