J. Comeau, M. Morton, W. Kuo, T. Thrivikraman, J. Andrews, C. Grens, J. Cressler, J. Papapolymerou, M. Mitchell
{"title":"用于x波段相控阵雷达系统的单片5位SiGe BiCMOS接收机","authors":"J. Comeau, M. Morton, W. Kuo, T. Thrivikraman, J. Andrews, C. Grens, J. Cressler, J. Papapolymerou, M. Mitchell","doi":"10.1109/BIPOL.2007.4351862","DOIUrl":null,"url":null,"abstract":"This work presents a 5-bit receiver for X-band phased-array radar applications based on a commercially-available silicon-germanium (SiGe) BiCMOS technology. The receiver achieves a gain of 11 dB, an operational bandwidth from 8.0 to 10.7 GHz, an average noise figure of 4.1 dB, and an input-referred third-order intercept point (IIP3) of-13 dBm, while only dissipating 33 mW of power. The receiver also provides 32 distinct phase states from 0 to 360deg, with an rms phase error < 9deg. This level of circuit performance and integration capability demonstrates the benefits of SiGe BiCMOS technology for emerging radar applications, making it an excellent candidate for integrated X-band phased-array radar transmit/receive modules.","PeriodicalId":356606,"journal":{"name":"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Monolithic 5-Bit SiGe BiCMOS Receiver for X-Band Phased-Array Radar Systems\",\"authors\":\"J. Comeau, M. Morton, W. Kuo, T. Thrivikraman, J. Andrews, C. Grens, J. Cressler, J. Papapolymerou, M. Mitchell\",\"doi\":\"10.1109/BIPOL.2007.4351862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a 5-bit receiver for X-band phased-array radar applications based on a commercially-available silicon-germanium (SiGe) BiCMOS technology. The receiver achieves a gain of 11 dB, an operational bandwidth from 8.0 to 10.7 GHz, an average noise figure of 4.1 dB, and an input-referred third-order intercept point (IIP3) of-13 dBm, while only dissipating 33 mW of power. The receiver also provides 32 distinct phase states from 0 to 360deg, with an rms phase error < 9deg. This level of circuit performance and integration capability demonstrates the benefits of SiGe BiCMOS technology for emerging radar applications, making it an excellent candidate for integrated X-band phased-array radar transmit/receive modules.\",\"PeriodicalId\":356606,\"journal\":{\"name\":\"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIPOL.2007.4351862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIPOL.2007.4351862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Monolithic 5-Bit SiGe BiCMOS Receiver for X-Band Phased-Array Radar Systems
This work presents a 5-bit receiver for X-band phased-array radar applications based on a commercially-available silicon-germanium (SiGe) BiCMOS technology. The receiver achieves a gain of 11 dB, an operational bandwidth from 8.0 to 10.7 GHz, an average noise figure of 4.1 dB, and an input-referred third-order intercept point (IIP3) of-13 dBm, while only dissipating 33 mW of power. The receiver also provides 32 distinct phase states from 0 to 360deg, with an rms phase error < 9deg. This level of circuit performance and integration capability demonstrates the benefits of SiGe BiCMOS technology for emerging radar applications, making it an excellent candidate for integrated X-band phased-array radar transmit/receive modules.