{"title":"面向分布式监控任务的无人机群估计与控制","authors":"F. Morbidi, R. Freeman, K. Lynch","doi":"10.1109/ACC.2011.5991398","DOIUrl":null,"url":null,"abstract":"This paper proposes a distributed estimation and control strategy for cooperative monitoring by swarms of unmanned aerial vehicles (UAVs) modeled as constant-speed unicycles. The geometric moments, encoding an abstraction of the swarm, are controlled via a nonlinear gradient descent to match those of a discrete set of particles describing the occurrence of some event of interest to be monitored. Because of its limited sensing capabilities, each agent can measure the position of only a subset of the overall particles, from which it locally estimates the desired moments of the swarm running a proportional-integral (PI) average consensus estimator. The closed-loop stability of the system arising from the combination of the gradient-descent controllers and the consensus estimators is studied and simulation results are provided to illustrate the proposed theory.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Estimation and control of UAV swarms for distributed monitoring tasks\",\"authors\":\"F. Morbidi, R. Freeman, K. Lynch\",\"doi\":\"10.1109/ACC.2011.5991398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a distributed estimation and control strategy for cooperative monitoring by swarms of unmanned aerial vehicles (UAVs) modeled as constant-speed unicycles. The geometric moments, encoding an abstraction of the swarm, are controlled via a nonlinear gradient descent to match those of a discrete set of particles describing the occurrence of some event of interest to be monitored. Because of its limited sensing capabilities, each agent can measure the position of only a subset of the overall particles, from which it locally estimates the desired moments of the swarm running a proportional-integral (PI) average consensus estimator. The closed-loop stability of the system arising from the combination of the gradient-descent controllers and the consensus estimators is studied and simulation results are provided to illustrate the proposed theory.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation and control of UAV swarms for distributed monitoring tasks
This paper proposes a distributed estimation and control strategy for cooperative monitoring by swarms of unmanned aerial vehicles (UAVs) modeled as constant-speed unicycles. The geometric moments, encoding an abstraction of the swarm, are controlled via a nonlinear gradient descent to match those of a discrete set of particles describing the occurrence of some event of interest to be monitored. Because of its limited sensing capabilities, each agent can measure the position of only a subset of the overall particles, from which it locally estimates the desired moments of the swarm running a proportional-integral (PI) average consensus estimator. The closed-loop stability of the system arising from the combination of the gradient-descent controllers and the consensus estimators is studied and simulation results are provided to illustrate the proposed theory.