利用社交媒体数据预测电影市场收入

Steve Shim, M. Pourhomayoun
{"title":"利用社交媒体数据预测电影市场收入","authors":"Steve Shim, M. Pourhomayoun","doi":"10.1109/IRI.2017.68","DOIUrl":null,"url":null,"abstract":"The amount of data being created and processed daily has grown exponentially with the introduction of the internet and social media. While the data are available, there is a struggle to determine how to effectively use and interpret the data. One of the most popular uses for the large quantities of data is to create models to predict the behavior or tendencies. One important application of prediction is predicting financial outcomes using datasets. As a specific case, this study focuses on the use of Twitter data collected leading up to a movie's opening weekend to predict its revenue over the course of each of the opening weekends. Due to the lack of readily available data, the data must be first gathered weekly using Twitter's API and related third party libraries. Construction of the predictive model is based on several machine learning algorithms using a set of features derived from user tweets. The results show that our predictive model can be used to determine the success of movies during the opening weekend by prediction the gross per day value. The modelling and process are presented such that they can be used as an aid to create similar models using other popular social media networks and their data.","PeriodicalId":254330,"journal":{"name":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Predicting Movie Market Revenue Using Social Media Data\",\"authors\":\"Steve Shim, M. Pourhomayoun\",\"doi\":\"10.1109/IRI.2017.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of data being created and processed daily has grown exponentially with the introduction of the internet and social media. While the data are available, there is a struggle to determine how to effectively use and interpret the data. One of the most popular uses for the large quantities of data is to create models to predict the behavior or tendencies. One important application of prediction is predicting financial outcomes using datasets. As a specific case, this study focuses on the use of Twitter data collected leading up to a movie's opening weekend to predict its revenue over the course of each of the opening weekends. Due to the lack of readily available data, the data must be first gathered weekly using Twitter's API and related third party libraries. Construction of the predictive model is based on several machine learning algorithms using a set of features derived from user tweets. The results show that our predictive model can be used to determine the success of movies during the opening weekend by prediction the gross per day value. The modelling and process are presented such that they can be used as an aid to create similar models using other popular social media networks and their data.\",\"PeriodicalId\":254330,\"journal\":{\"name\":\"2017 IEEE International Conference on Information Reuse and Integration (IRI)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Information Reuse and Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2017.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2017.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

随着互联网和社交媒体的引入,每天产生和处理的数据量呈指数级增长。虽然这些数据是可用的,但如何有效地使用和解释这些数据是一个难题。大量数据最流行的用途之一是创建模型来预测行为或趋势。预测的一个重要应用是使用数据集预测财务结果。作为一个具体的案例,本研究的重点是使用在电影首映周末之前收集的Twitter数据来预测每个首映周末的收入。由于缺乏现成的数据,数据必须首先使用Twitter的API和相关的第三方库每周收集一次。预测模型的构建基于几种机器学习算法,使用一组来自用户推文的特征。结果表明,我们的预测模型可以通过预测日均票房来判断首映周末电影的成功与否。建模和过程是这样呈现的,它们可以作为使用其他流行的社交媒体网络及其数据创建类似模型的辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Movie Market Revenue Using Social Media Data
The amount of data being created and processed daily has grown exponentially with the introduction of the internet and social media. While the data are available, there is a struggle to determine how to effectively use and interpret the data. One of the most popular uses for the large quantities of data is to create models to predict the behavior or tendencies. One important application of prediction is predicting financial outcomes using datasets. As a specific case, this study focuses on the use of Twitter data collected leading up to a movie's opening weekend to predict its revenue over the course of each of the opening weekends. Due to the lack of readily available data, the data must be first gathered weekly using Twitter's API and related third party libraries. Construction of the predictive model is based on several machine learning algorithms using a set of features derived from user tweets. The results show that our predictive model can be used to determine the success of movies during the opening weekend by prediction the gross per day value. The modelling and process are presented such that they can be used as an aid to create similar models using other popular social media networks and their data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信