基于基数样条的经验模态分解方法及其在脑电图分解中的应用

Raymond Ho, K. Hung
{"title":"基于基数样条的经验模态分解方法及其在脑电图分解中的应用","authors":"Raymond Ho, K. Hung","doi":"10.1109/iscaie54458.2022.9794540","DOIUrl":null,"url":null,"abstract":"This paper presents an improved empirical mode decomposition method called cardinal-spline empirical mode decomposition (CS-EMD). Unlike the classical empirical mode decomposition (EMD), the proposed method uses cardinal splines instead of cubic splines for signal envelope estimation. The decomposition performance of the CS-EMD method on synthetic signals is compared to the classical EMD method using performance evaluation indices. The orthogonal indices OIavg and OImax for an intermittent signal using CS-EMD are 0.0024 and 0.0105, respectively, compared to those of the classical EMD of 0.4438 and 1.9537 (closer to 0 is desirable). The energy conservation index (ECI) for the intermittent signal using CS-EMD is 0.9198 compared to 13.4496 using the classical EMD (closer to 1 is desirable). For a synthetic signal with components of close frequencies, the performance evaluation indices are OIavg=0.0019, OImax=0.0095, and ECI=0.8800 for CS-EMD and OIavg=0.0719, OImax=1.7821, and ECI=9.6610 for the classical EMD. Both EMD methods were also applied to an electroencephalogram (EEG), and the amount of mixed modes were observed and compared. The results show that the signal decomposition properties using CS-EMD are more desirable than those of the classical EMD, providing an improved EMD method for biosignal processing applications.","PeriodicalId":395670,"journal":{"name":"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Empirical Mode Decomposition Method Based on Cardinal Spline and its Application on Electroencephalogram Decomposition\",\"authors\":\"Raymond Ho, K. Hung\",\"doi\":\"10.1109/iscaie54458.2022.9794540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved empirical mode decomposition method called cardinal-spline empirical mode decomposition (CS-EMD). Unlike the classical empirical mode decomposition (EMD), the proposed method uses cardinal splines instead of cubic splines for signal envelope estimation. The decomposition performance of the CS-EMD method on synthetic signals is compared to the classical EMD method using performance evaluation indices. The orthogonal indices OIavg and OImax for an intermittent signal using CS-EMD are 0.0024 and 0.0105, respectively, compared to those of the classical EMD of 0.4438 and 1.9537 (closer to 0 is desirable). The energy conservation index (ECI) for the intermittent signal using CS-EMD is 0.9198 compared to 13.4496 using the classical EMD (closer to 1 is desirable). For a synthetic signal with components of close frequencies, the performance evaluation indices are OIavg=0.0019, OImax=0.0095, and ECI=0.8800 for CS-EMD and OIavg=0.0719, OImax=1.7821, and ECI=9.6610 for the classical EMD. Both EMD methods were also applied to an electroencephalogram (EEG), and the amount of mixed modes were observed and compared. The results show that the signal decomposition properties using CS-EMD are more desirable than those of the classical EMD, providing an improved EMD method for biosignal processing applications.\",\"PeriodicalId\":395670,\"journal\":{\"name\":\"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iscaie54458.2022.9794540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iscaie54458.2022.9794540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种改进的经验模态分解方法——基数样条经验模态分解(CS-EMD)。与传统的经验模态分解(EMD)方法不同,该方法使用基数样条代替三次样条进行信号包络估计。利用性能评价指标比较了CS-EMD方法与经典EMD方法对合成信号的分解性能。使用CS-EMD的间歇信号正交指数OIavg和OImax分别为0.0024和0.0105,而经典EMD的正交指数为0.4438和1.9537(更接近于0是理想的)。使用CS-EMD的间歇信号的节能指数(ECI)为0.9198,而使用经典EMD的节能指数为13.4496(更接近1是理想的)。对于频率相近的合成信号,CS-EMD的性能评价指标为OIavg=0.0019, OImax=0.0095, ECI=0.8800,经典EMD的性能评价指标为OIavg=0.0719, OImax=1.7821, ECI=9.6610。将两种EMD方法应用于脑电图(EEG),观察并比较混合模式的数量。结果表明,CS-EMD的信号分解性能优于经典EMD,为生物信号处理提供了一种改进的EMD方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Mode Decomposition Method Based on Cardinal Spline and its Application on Electroencephalogram Decomposition
This paper presents an improved empirical mode decomposition method called cardinal-spline empirical mode decomposition (CS-EMD). Unlike the classical empirical mode decomposition (EMD), the proposed method uses cardinal splines instead of cubic splines for signal envelope estimation. The decomposition performance of the CS-EMD method on synthetic signals is compared to the classical EMD method using performance evaluation indices. The orthogonal indices OIavg and OImax for an intermittent signal using CS-EMD are 0.0024 and 0.0105, respectively, compared to those of the classical EMD of 0.4438 and 1.9537 (closer to 0 is desirable). The energy conservation index (ECI) for the intermittent signal using CS-EMD is 0.9198 compared to 13.4496 using the classical EMD (closer to 1 is desirable). For a synthetic signal with components of close frequencies, the performance evaluation indices are OIavg=0.0019, OImax=0.0095, and ECI=0.8800 for CS-EMD and OIavg=0.0719, OImax=1.7821, and ECI=9.6610 for the classical EMD. Both EMD methods were also applied to an electroencephalogram (EEG), and the amount of mixed modes were observed and compared. The results show that the signal decomposition properties using CS-EMD are more desirable than those of the classical EMD, providing an improved EMD method for biosignal processing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信