具有执行器饱和的线性时滞系统的新的时滞相关稳定化结果

R. Dey, A. Rakshit, G. Ray, Sandip Ghosh
{"title":"具有执行器饱和的线性时滞系统的新的时滞相关稳定化结果","authors":"R. Dey, A. Rakshit, G. Ray, Sandip Ghosh","doi":"10.1109/EPSCICON.2012.6175267","DOIUrl":null,"url":null,"abstract":"In this communication, a modified delay-dependent stabilization criterion is derived based on new Lyapunov-Krasovskii functional for ascertaining local stabilization of an open-loop unstable time-system subjected to actuator saturation, while approximating the saturation function using polytopic representation. A numerical example is considered to show that the proposed criterion yields less conservative results compared to the existing ones in terms of delay upper bound and domain of attraction (DOA) estimation.","PeriodicalId":143947,"journal":{"name":"2012 International Conference on Power, Signals, Controls and Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"New delay-dependent stabilization result for linear time-delay system with actuator saturation\",\"authors\":\"R. Dey, A. Rakshit, G. Ray, Sandip Ghosh\",\"doi\":\"10.1109/EPSCICON.2012.6175267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this communication, a modified delay-dependent stabilization criterion is derived based on new Lyapunov-Krasovskii functional for ascertaining local stabilization of an open-loop unstable time-system subjected to actuator saturation, while approximating the saturation function using polytopic representation. A numerical example is considered to show that the proposed criterion yields less conservative results compared to the existing ones in terms of delay upper bound and domain of attraction (DOA) estimation.\",\"PeriodicalId\":143947,\"journal\":{\"name\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Power, Signals, Controls and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPSCICON.2012.6175267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Power, Signals, Controls and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPSCICON.2012.6175267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在此通信中,基于新的Lyapunov-Krasovskii函数,导出了一个改进的延迟相关稳定化准则,用于确定受致动器饱和影响的开环不稳定时间系统的局部稳定化,同时使用多边形表示近似饱和函数。算例表明,该准则在时延上界和DOA估计方面比现有准则具有更小的保守性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New delay-dependent stabilization result for linear time-delay system with actuator saturation
In this communication, a modified delay-dependent stabilization criterion is derived based on new Lyapunov-Krasovskii functional for ascertaining local stabilization of an open-loop unstable time-system subjected to actuator saturation, while approximating the saturation function using polytopic representation. A numerical example is considered to show that the proposed criterion yields less conservative results compared to the existing ones in terms of delay upper bound and domain of attraction (DOA) estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信