利用近似加法器电路进行图像处理的高能效高斯滤波器

Julio F. R. Oliveira, L. Soares, E. Costa, S. Bampi
{"title":"利用近似加法器电路进行图像处理的高能效高斯滤波器","authors":"Julio F. R. Oliveira, L. Soares, E. Costa, S. Bampi","doi":"10.1109/ICECS.2015.7440345","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of approximate adder circuits for 3×3 and 5×5 Gaussian filter implementations. The Gaussian filter is a convolution operator which is used to blur images and to remove noise, whose convolution implementation can be designed in hardware using only shifts and addition operations. In this work we evaluate the levels of approximations in computing or loss of accuracy in the arithmetic dataflow that the Gaussian filter can tolerate for a set of eight images. Our work deals with different levels of approximation in Ripple Carry Adders (RCA) which are part of the Gaussian filters adder tree implemented in hardware, and later compared to the best precise implementation of the same filter. Our results show an average energy savings of up to 40% and 25% for the approximate 3×3 and 5×5 Gaussian filters, respectively, without compromising the overall filtered images quality.","PeriodicalId":215448,"journal":{"name":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Energy-efficient Gaussian filter for image processing using approximate adder circuits\",\"authors\":\"Julio F. R. Oliveira, L. Soares, E. Costa, S. Bampi\",\"doi\":\"10.1109/ICECS.2015.7440345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of approximate adder circuits for 3×3 and 5×5 Gaussian filter implementations. The Gaussian filter is a convolution operator which is used to blur images and to remove noise, whose convolution implementation can be designed in hardware using only shifts and addition operations. In this work we evaluate the levels of approximations in computing or loss of accuracy in the arithmetic dataflow that the Gaussian filter can tolerate for a set of eight images. Our work deals with different levels of approximation in Ripple Carry Adders (RCA) which are part of the Gaussian filters adder tree implemented in hardware, and later compared to the best precise implementation of the same filter. Our results show an average energy savings of up to 40% and 25% for the approximate 3×3 and 5×5 Gaussian filters, respectively, without compromising the overall filtered images quality.\",\"PeriodicalId\":215448,\"journal\":{\"name\":\"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2015.7440345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2015.7440345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了近似加法器电路用于3×3和5×5高斯滤波器的实现。高斯滤波器是一种用于模糊图像和去除噪声的卷积算子,其卷积实现可以在硬件上只使用移位和加法运算来实现。在这项工作中,我们评估了计算中的近似水平或高斯滤波器对一组八幅图像所能容忍的算术数据流中的精度损失。我们的工作涉及Ripple Carry加法器(RCA)中的不同近似级别,RCA是硬件中实现的高斯滤波器加法器树的一部分,然后与同一滤波器的最佳精确实现进行比较。我们的结果显示,近似3×3和5×5高斯滤波器的平均节能分别高达40%和25%,而不会影响整体过滤图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient Gaussian filter for image processing using approximate adder circuits
This paper proposes the use of approximate adder circuits for 3×3 and 5×5 Gaussian filter implementations. The Gaussian filter is a convolution operator which is used to blur images and to remove noise, whose convolution implementation can be designed in hardware using only shifts and addition operations. In this work we evaluate the levels of approximations in computing or loss of accuracy in the arithmetic dataflow that the Gaussian filter can tolerate for a set of eight images. Our work deals with different levels of approximation in Ripple Carry Adders (RCA) which are part of the Gaussian filters adder tree implemented in hardware, and later compared to the best precise implementation of the same filter. Our results show an average energy savings of up to 40% and 25% for the approximate 3×3 and 5×5 Gaussian filters, respectively, without compromising the overall filtered images quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信